Solver¶
-
class
cthyb.Solver(beta, gf_struct, n_iw=1025, n_tau=10001, n_l=30)[source]¶ Bases:
pytriqs.applications.impurity_solvers.cthyb.SolverCore-
__init__(beta, gf_struct, n_iw=1025, n_tau=10001, n_l=30)¶ Initialise the solver.
Parameters: beta : scalar
Inverse temperature.
gf_struct : dict{str:list}
Structure of the Green’s functions. It must be a dictionary, which maps the name of each block of the Green’s function as a string to a list of integer indices. For example:
{'up': [1,2,3], 'down', [1,2,3]}.n_iw : integer, optional
Number of Matsubara frequencies used for the Green’s functions.
n_tau : integer, optional
Number of imaginary time points used for the Green’s functions.
n_l : integer, optional
Number of legendre polynomials to use in accumulations of the Green’s functions.
-
solve(**params_kw)¶ Solve the impurity problem. If
measure_g_tau(default =True),G_iwandSigma_iwwill be calculated and their tails fitted. In addition to the solver parameters, parameters to control the tail fitting can be provided.Parameters: params_kw : dict {‘param’:value} that is passed to the core solver.
- Two required parameters are
- h_int (Operator object): the local Hamiltonian of the impurity problem to be solved,
- n_cycles (int): number of measurements to be made.
perform_post_proc : boolean, optional, default =
TrueShould
G_iwandSigma_iwbe calculated?perform_tail_fit : boolean, optional, default =
FalseShould the tails of
Sigma_iwandG_iwbe fitted?fit_max_moment : integer, optional, default = 3
Highest moment to fit in the tail of
Sigma_iw.fit_known_moments : dict{str:
TailGfobject}, optional, default = {‘block_name’:TailGf(dim1, dim2, max_moment, order_min)}Known moments of
Sigma_iw, given as a TailGf object.fit_min_n : integer, optional, default =
int(0.8 * self.n_iw)Index of
iwfrom which to start fitting.fit_max_n : integer, optional, default =
n_iwIndex of
iwto fit until.
-
Delta_tau¶ \(\Delta(\tau)\) in imaginary time.
-
G0_iw¶ \(G_0(i\omega)\) in imaginary frequencies.
-
G_l¶ Accumulated \(G_l\) in Legendre polynomials representation.
-
G_tau¶ Accumulated \(G(\tau)\) in imaginary time.
-
atomic_gf¶ Atomic \(G(\tau)\) in imaginary time.
-
average_sign¶ Monte Carlo average sign.
-
density_matrix¶ Accumulated density matrix.
-
h_loc¶ The local Hamiltonian of the problem: \(H_{loc}\) used in the last call to
solve().
-
h_loc_diagonalization¶ Diagonalization of \(H_{loc}\).
-
last_solve_parameters¶ Set of parameters used in the last call to
solve().
-
performance_analysis¶ Histograms related to the performance analysis.
-
perturbation_order¶ Histograms of the perturbation order for each block.
-
perturbation_order_total¶ Histogram of the total perturbation order.
-
solve_status¶ Status of the
solve()on exit.
-