{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": { "nbsphinx": "hidden" }, "outputs": [], "source": [ "%matplotlib inline\n", "%config InlineBackend.figure_format = 'svg'\n", "\n", "import warnings \n", "warnings.filterwarnings(\"ignore\") #ignore some matplotlib warnings\n", "\n", "import numpy as np\n", "\n", "from pytriqs.plot.mpl_interface import plt\n", "plt.rcParams[\"figure.figsize\"] = (6,5) # set default size for all figures\n", "\n", "from pytriqs.utility.redirect import start_redirect\n", "start_redirect()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Perturbation order histograms\n", "\n", "To analyze the behaviour of the Markov chain in CTHYB the perturbation order histograms are a central tool. This is a simple example showing how to sample and plot these histograms.\n", "\n", "As an example we solve the one-orbital Anderson impurity at inverse temperature $\\beta$, embedded in a flat (Wilson) bath with non-interacting Green's function $G^{-1}_{0,\\sigma} (i\\omega_n) = i \\omega_n - \\epsilon_f - V^2 \\Gamma_\\sigma(i \\omega_n)$, and local interaction $H_\\mathrm{int} = U n_\\uparrow n_\\downarrow$, where $U$ is the Hubbard interaction, $\\epsilon_f$ is the local energy. The bath $\\Gamma$, and the bath has bandwidth $D$ and hybridization $V$. " ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "Starting on 1 Nodes at : 2019-06-05 17:20:04.584678\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\n", "╔╦╗╦═╗╦╔═╗ ╔═╗ ┌─┐┌┬┐┬ ┬┬ ┬┌┐ \n", " ║ ╠╦╝║║═╬╗╚═╗ │ │ ├─┤└┬┘├┴┐\n", " ╩ ╩╚═╩╚═╝╚╚═╝ └─┘ ┴ ┴ ┴ ┴ └─┘\n", "\n", "The local Hamiltonian of the problem:\n", "(-1,0)*c_dag('down',0)*c('down',0) + (-1,0)*c_dag('up',0)*c('up',0) + (2,0)*c_dag('down',0)*c_dag('up',0)*c('up',0)*c('down',0)\n", "Using autopartition algorithm to partition the local Hilbert space\n", "Found 4 subspaces.\n", "\n", "Warming up ...\n", "\n", "Accumulating ...\n", "17:20:04 0% ETA 00:00:14 cycle 667 of 100000\n", "17:20:06 14% ETA 00:00:12 cycle 14816 of 100000\n", "17:20:09 31% ETA 00:00:10 cycle 31517 of 100000\n", "17:20:12 51% ETA 00:00:07 cycle 51752 of 100000\n", "17:20:16 78% ETA 00:00:03 cycle 78933 of 100000\n", "\n", "\n", "[Rank 0] Collect results: Waiting for all mpi-threads to finish accumulating...\n", "[Rank 0] Timings for all measures:\n", "Measure | seconds \n", "Average sign | 0.0121935 \n", "Perturbation order | 0.017634 \n", "Perturbation order (down) | 0.0144553 \n", "Perturbation order (up) | 0.011125 \n", "Total measure time | 0.0554078 \n", "[Rank 0] Acceptance rate for all moves:\n", "Move set Insert two operators: 0.056355\n", " Move Insert Delta_up: 0.0565787\n", " Move Insert Delta_down: 0.0561309\n", "Move set Remove two operators: 0.0564614\n", " Move Remove Delta_up: 0.0566373\n", " Move Remove Delta_down: 0.0562848\n", "Move Shift one operator: 0.758509\n", "[Rank 0] Warmup lasted: 0.0125826 seconds [00:00:00]\n", "[Rank 0] Simulation lasted: 14.9179 seconds [00:00:14]\n", "[Rank 0] Number of measures: 100000\n", "Total number of measures: 100000\n", "Average sign: (1,0)\n" ] } ], "source": [ "from pytriqs.operators import n\n", "from pytriqs.archive import HDFArchive\n", "from pytriqs.gf import inverse, iOmega_n, Wilson\n", "\n", "from triqs_cthyb import Solver\n", "\n", "U, e_f, D, V, beta = 2., -1., 1., 1., 20.\n", "Sz = 0.5 * ( n('up', 0) - n('down', 0) )\n", "\n", "S = Solver(\n", " beta=beta, gf_struct=[('up',[0]), ('down',[0])],\n", " n_tau=400, n_iw=50,)\n", "\n", "S.G0_iw << inverse(iOmega_n - e_f - V**2 * Wilson(D))\n", "\n", "S.solve(\n", " h_int=U*n('up',0)*n('down',0),\n", " n_cycles=100000,\n", " length_cycle=20,\n", " n_warmup_cycles=100,\n", " measure_G_tau=False,\n", " measure_pert_order=True,\n", " )" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Plotting perturbation order histograms\n", "\n", "The measured histograms are available as the member properties ``S.perturbation_order`` and ``S.perturbation_order_total`` of the cthyb solver.\n", "\n", "For an ergodic Markov chain with sufficient number of warmup sweeps, the perturbation order distribution should be approximately Gaussian (or Possonian for low average orders)." ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "image/svg+xml": [ "\n", "\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n" ], "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "from pytriqs.plot.mpl_interface import oplot, oplotr, plt\n", "\n", "oplot(S.perturbation_order_total, label='total')\n", "for b in S.perturbation_order:\n", " oplot(S.perturbation_order[b], label='block {:s}'.format(b))\n", "\n", "plt.semilogy([], [])\n", "plt.xlim([0, 40]);" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The total average perturbation order is important information to determine the ``length_cycle`` parameter that controls the number of attempted moves between measurements. To ensure low correlation between measurements the ``length_cycle`` should be high enough that the attempted moves can significanty change the configuration." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Autor: H. U.R. Strand (2019)" ] } ], "metadata": { "celltoolbar": "Edit Metadata", "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.15" } }, "nbformat": 4, "nbformat_minor": 2 }