Solver¶
-
class
triqs_cthyb.
Solver
(beta, gf_struct, n_iw=1025, n_tau=10001, n_l=30)[source]¶ Bases:
triqs_cthyb.solver_core.SolverCore
-
__init__
(beta, gf_struct, n_iw=1025, n_tau=10001, n_l=30)[source]¶ Initialise the solver.
Parameters: beta : scalar
Inverse temperature.
gf_struct : list of pairs [ (str,[int,…]), …]
Structure of the Green’s functions. It must be a list of pairs, each containing the name of the Green’s function block as a string and a list of integer indices. For example:
[ ('up', [0, 1, 2]), ('down', [0, 1, 2]) ]
.n_iw : integer, optional
Number of Matsubara frequencies used for the Green’s functions.
n_tau : integer, optional
Number of imaginary time points used for the Green’s functions.
n_l : integer, optional
Number of legendre polynomials to use in accumulations of the Green’s functions.
-
Delta_infty
¶ \(G_0^{-1}(i\omega_n = \infty)\) in Matsubara Frequency.
-
Delta_tau
¶ \(\Delta(\tau)\) in imaginary time.
-
G0_iw
¶ \(G_0(i\omega)\) in imaginary frequencies.
-
G2_iw
¶ Two-particle Green’s function \(G^{(2)}(i\nu,i\nu',i\nu'')\) (three Fermionic frequencies)
-
G2_iw_nfft
¶ Two-particle Green’s function \(G^{(2)}(i\nu,i\nu',i\nu'')\) (three Fermionic frequencies)
-
G2_iw_ph
¶ Two-particle Green’s function \(G^{(2)}(i\omega,i\nu,i\nu')\) in the ph-channel (one bosonic matsubara and two fermionic)
-
G2_iw_ph_nfft
¶ Two-particle Green’s function \(G^{(2)}(i\omega,i\nu,i\nu')\) in the ph-channel (one bosonic matsubara and two fermionic)
-
G2_iw_pp
¶ Two-particle Green’s function \(G^{(2)}(i\omega,i\nu,i\nu')\) in the pp-channel (one bosonic matsubara and two fermionic)
-
G2_iw_pp_nfft
¶ Two-particle Green’s function \(G^{(2)}(i\omega,i\nu,i\nu')\) in the pp-channel (one bosonic matsubara and two fermionic)
-
G2_iwll_ph
¶ Two-particle Green’s function \(G^{(2)}(i\omega,l,l')\) in the ph-channel (one bosonic matsubara and two legendre)
-
G2_iwll_pp
¶ Two-particle Green’s function \(G^{(2)}(i\omega,l,l')\) in the pp-channel (one bosonic matsubara and two legendre)
-
G2_tau
¶ Two-particle Green’s function \(G^{(2)}(\tau_1,\tau_2,\tau_3)\) (three Fermionic imaginary times)
-
G_l
¶ Single-particle Green’s function \(G_l\) in Legendre polynomial representation.
-
G_tau
¶ Single-particle Green’s function \(G(\tau)\) in imaginary time.
-
G_tau_accum
¶ Intermediate Green’s function to accumulate g(tau), either real or complex
-
O_tau
¶ General operator Green’s function \(O(\tau)\) in imaginary time.
-
average_sign
¶ Monte Carlo average sign.
-
constr_parameters
¶
-
density_matrix
¶ Accumulated density matrix.
-
h_loc
¶ The local Hamiltonian of the problem: \(H_{loc}\) used in the last call to
solve()
.
-
h_loc_diagonalization
¶ Diagonalization of \(H_{loc}\).
-
last_constr_parameters
¶ Set of parameters used in the construction of the
solver_core
class.
-
last_solve_parameters
¶ Set of parameters used in the last call to
solve()
.
-
performance_analysis
¶ Histograms related to the performance analysis.
-
perturbation_order
¶ Histograms of the perturbation order for each block.
-
perturbation_order_total
¶ Histogram of the total perturbation order.
-
solve
(**params_kw)[source]¶ Solve the impurity problem. If
measure_g_tau
(default =True
),G_iw
andSigma_iw
will be calculated and their tails fitted. In addition to the solver parameters, parameters to control the tail fitting can be provided.Parameters: params_kw : dict {‘param’:value} that is passed to the core solver.
- Two required parameters are
- h_int (Operator object): the local Hamiltonian of the impurity problem to be solved,
- n_cycles (int): number of measurements to be made.
perform_post_proc : boolean, optional, default =
True
Should
G_iw
andSigma_iw
be calculated?perform_tail_fit : boolean, optional, default =
False
Should the tails of
Sigma_iw
andG_iw
be fitted?fit_max_moment : integer, optional, default = 3
Highest moment to fit in the tail of
Sigma_iw
.fit_known_moments :
ndarray.shape[order, Sigma_iw[0].target_shape]
, optional, default = NoneKnown moments of Sigma_iw, given as an numpy ndarray
fit_min_n : integer, optional, default =
int(0.8 * self.n_iw)
Index of
iw
from which to start fitting.fit_max_n : integer, optional, default =
n_iw
Index of
iw
to fit until.
-
solve_parameters
¶
-
solve_status
¶ Status of the
solve()
on exit.
-