Solver¶
- 
class triqs_cthyb.Solver(beta, gf_struct, n_iw=1025, n_tau=10001, n_l=30)[source]¶
- Bases: - triqs_cthyb.solver_core.SolverCore- 
__init__(beta, gf_struct, n_iw=1025, n_tau=10001, n_l=30)[source]¶
- Initialise the solver. - Parameters: - beta : scalar - Inverse temperature. - gf_struct : list of pairs [ (str,[int,…]), …] - Structure of the Green’s functions. It must be a list of pairs, each containing the name of the Green’s function block as a string and a list of integer indices. For example: - [ ('up', [0, 1, 2]), ('down', [0, 1, 2]) ].- n_iw : integer, optional - Number of Matsubara frequencies used for the Green’s functions. - n_tau : integer, optional - Number of imaginary time points used for the Green’s functions. - n_l : integer, optional - Number of legendre polynomials to use in accumulations of the Green’s functions. 
 - 
Delta_infty¶
- \(G_0^{-1}(i\omega_n = \infty)\) in Matsubara Frequency. 
 - 
Delta_tau¶
- \(\Delta(\tau)\) in imaginary time. 
 - 
G0_iw¶
- \(G_0(i\omega)\) in imaginary frequencies. 
 - 
G2_iw¶
- Two-particle Green’s function \(G^{(2)}(i\nu,i\nu',i\nu'')\) (three Fermionic frequencies) 
 - 
G2_iw_nfft¶
- Two-particle Green’s function \(G^{(2)}(i\nu,i\nu',i\nu'')\) (three Fermionic frequencies) 
 - 
G2_iw_ph¶
- Two-particle Green’s function \(G^{(2)}(i\omega,i\nu,i\nu')\) in the ph-channel (one bosonic matsubara and two fermionic) 
 - 
G2_iw_ph_nfft¶
- Two-particle Green’s function \(G^{(2)}(i\omega,i\nu,i\nu')\) in the ph-channel (one bosonic matsubara and two fermionic) 
 - 
G2_iw_pp¶
- Two-particle Green’s function \(G^{(2)}(i\omega,i\nu,i\nu')\) in the pp-channel (one bosonic matsubara and two fermionic) 
 - 
G2_iw_pp_nfft¶
- Two-particle Green’s function \(G^{(2)}(i\omega,i\nu,i\nu')\) in the pp-channel (one bosonic matsubara and two fermionic) 
 - 
G2_iwll_ph¶
- Two-particle Green’s function \(G^{(2)}(i\omega,l,l')\) in the ph-channel (one bosonic matsubara and two legendre) 
 - 
G2_iwll_pp¶
- Two-particle Green’s function \(G^{(2)}(i\omega,l,l')\) in the pp-channel (one bosonic matsubara and two legendre) 
 - 
G2_tau¶
- Two-particle Green’s function \(G^{(2)}(\tau_1,\tau_2,\tau_3)\) (three Fermionic imaginary times) 
 - 
G_l¶
- Single-particle Green’s function \(G_l\) in Legendre polynomial representation. 
 - 
G_tau¶
- Single-particle Green’s function \(G(\tau)\) in imaginary time. 
 - 
G_tau_accum¶
- Intermediate Green’s function to accumulate g(tau), either real or complex 
 - 
O_tau¶
- General operator Green’s function \(O(\tau)\) in imaginary time. 
 - 
average_sign¶
- Monte Carlo average sign. 
 - 
constr_parameters¶
 - 
density_matrix¶
- Accumulated density matrix. 
 - 
h_loc¶
- The local Hamiltonian of the problem: \(H_{loc}\) used in the last call to - solve().
 - 
h_loc_diagonalization¶
- Diagonalization of \(H_{loc}\). 
 - 
last_constr_parameters¶
- Set of parameters used in the construction of the - solver_coreclass.
 - 
last_solve_parameters¶
- Set of parameters used in the last call to - solve().
 - 
performance_analysis¶
- Histograms related to the performance analysis. 
 - 
perturbation_order¶
- Histograms of the perturbation order for each block. 
 - 
perturbation_order_total¶
- Histogram of the total perturbation order. 
 - 
solve(**params_kw)[source]¶
- Solve the impurity problem. If - measure_g_tau(default =- True),- G_iwand- Sigma_iwwill be calculated and their tails fitted. In addition to the solver parameters, parameters to control the tail fitting can be provided.- Parameters: - params_kw : dict {‘param’:value} that is passed to the core solver. - Two required parameters are
- h_int (Operator object): the local Hamiltonian of the impurity problem to be solved,
- n_cycles (int): number of measurements to be made.
 
 - perform_post_proc : boolean, optional, default = - True- Should - G_iwand- Sigma_iwbe calculated?- perform_tail_fit : boolean, optional, default = - False- Should the tails of - Sigma_iwand- G_iwbe fitted?- fit_max_moment : integer, optional, default = 3 - Highest moment to fit in the tail of - Sigma_iw.- fit_known_moments : - ndarray.shape[order, Sigma_iw[0].target_shape], optional, default = None- Known moments of Sigma_iw, given as an numpy ndarray - fit_min_n : integer, optional, default = - int(0.8 * self.n_iw)- Index of - iwfrom which to start fitting.- fit_max_n : integer, optional, default = - n_iw- Index of - iwto fit until.
 - 
solve_parameters¶
 - 
solve_status¶
- Status of the - solve()on exit.
 
-