.. Generated automatically by cpp2rst .. highlight:: c .. role:: red .. role:: green .. role:: param .. _triqs_ctseg__evaluate_3w_vertex: triqs_ctseg::evaluate_3w_vertex =============================== *#include * **Synopsis** .. rst-class:: cppsynopsis | void :red:`evaluate_3w_vertex` (block_gf const & :param:`gw`, | block_gf const & :param:`fw`, | gf_3w_container_t const & :param:`g3w`, | gf_3w_container_t const & :param:`f3w`, | bool :param:`measure_g3w`, | bool :param:`measure_f3w`, | std::string :param:`fname`) Evaluation of the 4-leg vertex for the 4-point correlation function If one or two of the three-frequency correlation functions have been measured and the parameter ``evaluate_vertex`` is set to ``true``, the following vertex function is computed at the end of the simulation: .. math:: \gamma_{\sigma\sigma'}(i\omega,i\omega',i\nu) = \frac{G^{2,\text{con}}_{\sigma\sigma'}(i\omega,i\omega',i\nu)}{G_\sigma(i\omega)G_\sigma(i\omega+i\nu)G_\sigma'(i\omega'+i\nu)G_\sigma'(i\omega')} .. Depending on which two-frequency correlation functions have been measured, the connected part is computed in either of the following ways: .. math:: G^{2,\text{con}}_{\sigma}(i\omega,i\omega',i\nu) = G^{2}_{\sigma\sigma'}(i\omega,i\omega',i\nu) - G^{2,\text{disc}}_{\sigma\sigma'}(i\omega,i\omega',i\nu) .. .. math:: G^{2,\text{con}}_{\sigma}(i\omega,i\omega',i\nu) = G_\sigma(i\omega) F_{\sigma\sigma'}^{2}(i\omega,i\omega',i\nu)-F_\sigma(i\omega) G_{\sigma\sigma'}^{2}(i\omega,i\omega',i\nu) .. .. math:: G^{2,\text{con}}_{\sigma}(i\omega,i\omega',i\nu) = \Big[G_\sigma(i\omega) F_{\sigma\sigma'}^{2}(i\omega,i\omega',i\nu)-F_\sigma(i\omega) G_{\sigma}^{2,\text{disc}}(i\omega,i\omega',i\nu)\Big]/[1+F_\sigma(i\omega)]. .. The disconnected part of the correlation function has been defined as .. math:: G^{2,\text{disc}}_{\sigma\sigma'}(i\omega,i\omega',i\nu) = \beta G_{\sigma}(i\omega)G_\sigma'(i\omega')\delta_{\nu}-\beta G_\sigma(i\omega) G_\sigma(i\omega+i\nu)\delta_{\omega,\omega'}\delta_{\sigma\sigma'}. ..