Solver options and accessors
The solver consists of one main object with a constructor and a solve()
method, and accessors.
The options of the constructor and solve()
method are used to give more information as to the desired run, such as number of Matsubara frequencies, number of Monte-Carlo cycles, or which observables have to be measured. The accessors are members of the solver class which are used both to set the inputs of the solver (like the non-interacting Green’s function G0_iw
or the dynamical interactions D0_iw
) and to read out the observables at the end of the computation (such as G_tau
, G_iw
or nn_iw
).
The options of the constructor are:
Parameter Name |
Type |
Default |
Documentation |
---|---|---|---|
beta |
double |
– |
Inverse temperature |
gf_struct |
gf_struct_t |
– |
Structure of the GF (names, sizes of blocks) |
n_tau |
int |
10001 |
Number of time slices for \(Delta(\tau)\)/\(G(\tau)\)/\(F(\tau)\) |
n_tau_k |
int |
10001 |
Number of time slices for \(K(\tau)\) |
n_tau_jperp |
int |
10001 |
Number of time slices for \(J_\perp(\tau)\) |
n_tau_nn |
int |
101 |
Number of Legendre coefficients for G(l) |
n_w_b_nn |
int |
32 |
Number of bosonic Matsub. freqs for \(nn(i\omega)\), \(\mathcal{D}_0(i\omega)\), \(J_\perp\) |
n_iw |
int |
1025 |
Number of fermionic Matsubara frequencies for \(G_0(i\omega)\), \(G\), \(F\), \(\Sigma\) |
The options of the solve() method and the solver accessors are summarized below. They are identical in the C++ and Python interface.
C++ interface
Python interface
- class triqs_ctseg.SolverCore
Main solver class
Worker which runs the quantum Monte-Carlo simulation.
- D0_iw
Density-density retarded interactions $mathcal{D}^{sigmasigma’}_{0,ab}(iOmega)$
- Delta_tau
Hybridization function $Delta^sigma_{ab}(tau)$
- F_2w
3-point improved estimator (see [[measure_g2w]])
- F_3w
4-point improved estimator (see [[measure_g3w]])
- F_iw
Improved estimator function $F^sigma_{ab}(iomega)$ (see [[measure_gw]])
- F_l
Improved estimator function in Legendre basis $G^sigma_{ab}(n)$ (see [[measure_gl]])
- F_tau
Improved estimator function $F^sigma_{ab}(tau)$ (see [[measure_gt]])
- G0_iw
Weiss field $mathcal{G}^{sigma}_{0,ab}(iomega)$
- G_2w
3-point correlation function $chi^{sigmasigma’}_{abc}(iomega,iOmega)$ (see [[measure_g2w]])
- G_3w
4-point correlation function $chi^{sigmasigma’}_{abcd}(iomega,iomega’,iOmega)$ (see [[measure_g3w]])
- G_iw
Impurity Green’s function $G^sigma_{ab}(iomega)$ (see [[measure_gw]])
- G_l
Impurity Green’s function in Legendre basis $G^sigma_{ab}(n)$ (see [[measure_gl]])
- G_tau
Impurity Green’s function $G^sigma_{ab}(tau)$ (see [[measure_gt]])
- Jperp_iw
Dynamical spin-spin interaction, perpendicual components: $mathcal{J}_perp(iOmega)$
- Jperp_tau
Dynamical spin-spin interactions $mathcal{J}_perp(tau)$
- K_tau
Dynamical kernel $K(tau)$
- Kprime_tau
Derivative of the dynamical kernel $partial_tau K(tau)$
- Sigma_iw
Impurity self-energy $Sigma^sigma_{ab}(iomega)$ (see [[measure_gw]])
- average_sign
Monte Carlo sign
- histogram
histogram of hybridization perturbation order (see [[measure_hist]])
- histogram_composite
histogram of $mathcal{J}_perp$ perturbation order (see [[measure_hist_composite]])
- nn
density-density static correlation $langle n^sigma_a n^{sigma’}_b rangle$ (see [[measure_nn]])
- nn_iw
Density-density correlation function $mathrm{FT}left[langle n^sigma_{a}(tau) n^{sigma’}_{b}(0)rangleright]$ (see [[measure_nnw]])
- nn_tau
Density-density correlation function $langle n^sigma_{a}(tau) n^{sigma’}_{b}(0)rangle$ (see [[measure_nnt]])
- sanity_check()
Signature : (triqs_ctseg::solve_params_t p, int n_w, int n_w_b) -> None
- solve()
solve method: starts the Metropolis algorithm
Steps:
extract \(\Delta^\sigma_{ab}(\tau)\) and \(\mu^\sigma_a\) from
\(\mathcal{G}^\sigma_{ab}(i\omega)\)
if \(\mathcal{D}^{\sigma\sigma'}_{0,ab}(i\Omega)\neq 0\), extract
\(K(^{\sigma\sigma'}_{ab}\tau)\) and $partial_tau K^{sigmasigma’}_{ab}(tau)$ from \(\mathcal{D}^{\sigma\sigma'}_{0,ab}(i\Omega)\)
if \(\mathcal{J}_{\perp,a}(i\Omega)\neq 0\), extract $partial_tau
K_{perp,a}(tau)$ from \(\mathcal{J}_{\perp,a}(i\Omega)\) - add the moves and measures according to the parameters supplied by the user
start the Monte-Carlo simulation
finalize the Monte Carlo simulation
- state_histogram
histogram of the boundary states of the trace (see [[measure_statehist]])