Source code for triqs_dft_tools.converters.plovasp.proj_shell

 
################################################################################
#
# TRIQS: a Toolbox for Research in Interacting Quantum Systems
#
# Copyright (C) 2011 by M. Ferrero, O. Parcollet
#
# DFT tools: Copyright (C) 2011 by M. Aichhorn, L. Pourovskii, V. Vildosola
#
# PLOVasp: Copyright (C) 2015 by O. E. Peil
#
# TRIQS is free software: you can redistribute it and/or modify it under the
# terms of the GNU General Public License as published by the Free Software
# Foundation, either version 3 of the License, or (at your option) any later
# version.
#
# TRIQS is distributed in the hope that it will be useful, but WITHOUT ANY
# WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
# FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
# details.
#
# You should have received a copy of the GNU General Public License along with
# TRIQS. If not, see <http://www.gnu.org/licenses/>.
#
################################################################################
r"""
    vasp.proj_shell
    ===============

    Storage and manipulation on projector shells.
"""
def issue_warning(message):
    """
    Issues a warning.
    """
    print
    print "  !!! WARNING !!!: " + message
    print

import itertools as it
import numpy as np
try:
    import atm
    atmlib_present = True
except ImportError:
    issue_warning("Error importing ATM libray, DOS calculation will fail!")
    atmlib_present = False

np.set_printoptions(suppress=True)

################################################################################
################################################################################
#
# class ProjectorShell
#
################################################################################
################################################################################
[docs]class ProjectorShell: """ Container of projectors related to a specific shell. The constructor pre-selects a subset of projectors according to the shell parameters passed from the config-file. Parameters: - sh_pars (dict) : shell parameters from the config-file - proj_raw (numpy.array) : array of raw projectors """ def __init__(self, sh_pars, proj_raw, proj_params, kmesh, structure, nc_flag): self.lorb = sh_pars['lshell'] self.ions = sh_pars['ions'] self.user_index = sh_pars['user_index'] self.nc_flag = nc_flag # try: # self.tmatrix = sh_pars['tmatrix'] # except KeyError: # self.tmatrix = None self.lm1 = self.lorb**2 self.lm2 = (self.lorb+1)**2 self.nion = self.ions['nion'] # Extract ion list and equivalence classes (ion sorts) self.ion_list = sorted(it.chain(*self.ions['ion_list'])) self.ion_sort = [] for ion in self.ion_list: for icl, eq_cl in enumerate(self.ions['ion_list']): if ion in eq_cl: self.ion_sort.append(icl + 1) # Enumerate classes starting from 1 break self.ndim = self.extract_tmatrices(sh_pars) self.extract_projectors(proj_raw, proj_params, kmesh, structure) ################################################################################ # # extract_tmatrices # ################################################################################
[docs] def extract_tmatrices(self, sh_pars): """ Extracts and interprets transformation matrices provided by the config-parser. There are two relevant options in 'sh_pars': 'tmatrix' : a transformation matrix applied to all ions in the shell 'tmatrices': interpreted as a set of transformation matrices for each ion. If both of the options are present a warning is issued and 'tmatrices' supersedes 'tmatrix'. Flag 'self.do_transform' is introduced for the optimization purposes to avoid superfluous matrix multiplications. """ nion = self.nion nm = self.lm2 - self.lm1 if 'tmatrices' in sh_pars: self.do_transform = True if 'tmatrix' in sh_pars: mess = "Both TRANSFORM and TRANSFILE are specified, TRANSFORM will be ignored." issue_warning(mess) raw_matrices = sh_pars['tmatrices'] nrow, ncol = raw_matrices.shape assert nrow%nion == 0, "Number of rows in TRANSFILE must be divisible by the number of ions" assert ncol%nm == 0, "Number of columns in TRANSFILE must be divisible by the number of orbitals 2*l + 1" nr = nrow / nion nsize = ncol / nm assert nsize in (1, 2, 4), "Number of columns in TRANSFILE must be divisible by either 1, 2, or 4" # # Determine the spin-dimension and whether the matrices are real or complex # # if nsize == 1 or nsize == 2: # Matrices (either real or complex) are spin-independent # nls_dim = nm # if msize == 2: # is_complex = True # else: # is_complex = False # elif nsize = 4: # Matrices are complex and spin-dependent # nls_dim = 2 * nm # is_complex = True # is_complex = nsize > 1 ns_dim = max(1, nsize / 2) # Dimension of the orbital subspace assert nr%ns_dim == 0, "Number of rows in TRANSFILE is not compatible with the spin dimension" ndim = nr / ns_dim self.tmatrices = np.zeros((nion, nr, nm * ns_dim), dtype=np.complex128) if is_complex: raw_matrices = raw_matrices[:, ::2] + raw_matrices[:, 1::2] * 1j for io in xrange(nion): i1 = io * nr i2 = (io + 1) * nr self.tmatrices[io, :, :] = raw_matrices[i1:i2, :] return ndim if 'tmatrix' in sh_pars: self.do_transform = True raw_matrix = sh_pars['tmatrix'] nrow, ncol = raw_matrix.shape assert ncol%nm == 0, "Number of columns in TRANSFORM must be divisible by the number of orbitals 2*l + 1" # Only spin-independent matrices are expected here nsize = ncol / nm assert nsize in (1, 2), "Number of columns in TRANSFORM must be divisible by either 1 or 2" is_complex = nsize > 1 if is_complex: matrix = raw_matrix[:, ::2] + raw_matrix[:, 1::2] * 1j else: matrix = raw_matrix ndim = nrow self.tmatrices = np.zeros((nion, nrow, nm), dtype=np.complex128) for io in xrange(nion): self.tmatrices[io, :, :] = raw_matrix return ndim # If no transformation matrices are provided define a default one self.do_transform = False ns_dim = 2 if self.nc_flag else 1 ndim = nm * ns_dim # We still need the matrices for the output self.tmatrices = np.zeros((nion, ndim, ndim), dtype=np.complex128) for io in xrange(nion): self.tmatrices[io, :, :] = np.identity(ndim, dtype=np.complex128) return ndim
################################################################################ # # extract_projectors # ################################################################################
[docs] def extract_projectors(self, proj_raw, proj_params, kmesh, structure): """ Extracts projectors for the given shell. Projectors are selected from the raw-projector array 'proj_raw' according to the shell parameters. If necessary the projectors are transformed usin 'self.tmatrices'. """ assert self.nc_flag == False, "Non-collinear case is not implemented" # nion = len(self.ion_list) nion = self.nion nlm = self.lm2 - self.lm1 _, ns, nk, nb = proj_raw.shape if self.do_transform: # TODO: implement a non-collinear case # for a non-collinear case 'ndim' is 'ns * nm' ndim = self.tmatrices.shape[1] self.proj_arr = np.zeros((nion, ns, nk, ndim, nb), dtype=np.complex128) for ik in xrange(nk): kp = kmesh['kpoints'][ik] for io, ion in enumerate(self.ion_list): proj_k = np.zeros((ns, nlm, nb), dtype=np.complex128) qcoord = structure['qcoords'][ion] # kphase = np.exp(-2.0j * np.pi * np.dot(kp, qcoord)) # kphase = 1.0 for m in xrange(nlm): # Here we search for the index of the projector with the given isite/l/m indices for ip, par in enumerate(proj_params): if par['isite'] - 1 == ion and par['l'] == self.lorb and par['m'] == m: proj_k[:, m, :] = proj_raw[ip, :, ik, :] #* kphase break for isp in xrange(ns): self.proj_arr[io, isp, ik, :, :] = np.dot(self.tmatrices[io, :, :], proj_k[isp, :, :]) else: # No transformation: just copy the projectors as they are self.proj_arr = np.zeros((nion, ns, nk, nlm, nb), dtype=np.complex128) for io, ion in enumerate(self.ion_list): qcoord = structure['qcoords'][ion] for m in xrange(nlm): # Here we search for the index of the projector with the given isite/l/m indices for ip, par in enumerate(proj_params): if par['isite'] - 1 == ion and par['l'] == self.lorb and par['m'] == m: self.proj_arr[io, :, :, m, :] = proj_raw[ip, :, :, :] # for ik in xrange(nk): # kp = kmesh['kpoints'][ik] ## kphase = np.exp(-2.0j * np.pi * np.dot(kp, qcoord)) # kphase = 1.0 # self.proj_arr[io, :, :, m, :] = proj_raw[ip, :, :, :] # * kphase break
################################################################################ # # select_projectors # ################################################################################
[docs] def select_projectors(self, ib_win, ib_min, ib_max): """ Selects a subset of projectors corresponding to a given energy window. """ self.ib_win = ib_win self.ib_min = ib_min self.ib_max = ib_max nb_max = ib_max - ib_min + 1 # Set the dimensions of the array nion, ns, nk, nlm, nbtot = self.proj_arr.shape # !!! Note that the order of the two last indices is different !!! self.proj_win = np.zeros((nion, ns, nk, nlm, nb_max), dtype=np.complex128) # Select projectors for a given energy window ns_band = self.ib_win.shape[1] for isp in xrange(ns): for ik in xrange(nk): # TODO: for non-collinear case something else should be done here is_b = min(isp, ns_band) ib1 = self.ib_win[ik, is_b, 0] ib2 = self.ib_win[ik, is_b, 1] + 1 ib_win = ib2 - ib1 self.proj_win[:, isp, ik, :, :ib_win] = self.proj_arr[:, isp, ik, :, ib1:ib2]
################################################################################ # # density_matrix # ################################################################################
[docs] def density_matrix(self, el_struct, site_diag=True, spin_diag=True): """ Returns occupation matrix/matrices for the shell. """ nion, ns, nk, nlm, nbtot = self.proj_win.shape # assert site_diag, "site_diag = False is not implemented" assert spin_diag, "spin_diag = False is not implemented" if site_diag: occ_mats = np.zeros((ns, nion, nlm, nlm), dtype=np.float64) overlaps = np.zeros((ns, nion, nlm, nlm), dtype=np.float64) else: ndim = nion * nlm occ_mats = np.zeros((ns, 1, ndim, ndim), dtype=np.float64) overlaps = np.zeros((ns, 1, ndim, ndim), dtype=np.float64) # self.proj_win = np.zeros((nion, ns, nk, nlm, nb_max), dtype=np.complex128) kweights = el_struct.kmesh['kweights'] occnums = el_struct.ferw ib1 = self.ib_min ib2 = self.ib_max + 1 if site_diag: for isp in xrange(ns): for ik, weight, occ in it.izip(it.count(), kweights, occnums[isp, :, :]): for io in xrange(nion): proj_k = self.proj_win[io, isp, ik, ...] occ_mats[isp, io, :, :] += np.dot(proj_k * occ[ib1:ib2], proj_k.conj().T).real * weight overlaps[isp, io, :, :] += np.dot(proj_k, proj_k.conj().T).real * weight else: proj_k = np.zeros((ndim, nbtot), dtype=np.complex128) for isp in xrange(ns): for ik, weight, occ in it.izip(it.count(), kweights, occnums[isp, :, :]): for io in xrange(nion): i1 = io * nlm i2 = (io + 1) * nlm proj_k[i1:i2, :] = self.proj_win[io, isp, ik, ...] occ_mats[isp, 0, :, :] += np.dot(proj_k * occ[ib1:ib2], proj_k.conj().T).real * weight overlaps[isp, 0, :, :] += np.dot(proj_k, proj_k.conj().T).real * weight # if not symops is None: # occ_mats = symmetrize_matrix_set(occ_mats, symops, ions, perm_map) return occ_mats, overlaps
################################################################################ # # local_hamiltonian # ################################################################################
[docs] def local_hamiltonian(self, el_struct, site_diag=True, spin_diag=True): """ Returns occupation matrix/matrices for the shell. """ nion, ns, nk, nlm, nbtot = self.proj_win.shape assert site_diag, "site_diag = False is not implemented" assert spin_diag, "spin_diag = False is not implemented" loc_ham = np.zeros((ns, nion, nlm, nlm), dtype=np.float64) # self.proj_win = np.zeros((nion, ns, nk, nlm, nb_max), dtype=np.complex128) kweights = el_struct.kmesh['kweights'] occnums = el_struct.ferw ib1 = self.ib_min ib2 = self.ib_max + 1 for isp in xrange(ns): for ik, weight, occ, eigk in it.izip(it.count(), kweights, occnums[isp, :, :], el_struct.eigvals[:, ib1:ib2, isp]): for io in xrange(nion): proj_k = self.proj_win[io, isp, ik, ...] loc_ham[isp, io, :, :] += np.dot(proj_k * (eigk - el_struct.efermi), proj_k.conj().T).real * weight # if not symops is None: # occ_mats = symmetrize_matrix_set(occ_mats, symops, ions, perm_map) return loc_ham
################################################################################ # # density_of_states # ################################################################################
[docs] def density_of_states(self, el_struct, emesh): """ Returns projected DOS for the shell. """ nion, ns, nk, nlm, nbtot = self.proj_win.shape assert atmlib_present, "ATM library was not imported; cannot calculate DOS" # There is a problem with data storage structure of projectors that will # make life more complicated. The problem is that band-indices of projectors # for different k-points do not match because we store 'nb_max' values starting # from 0. nb_max = self.ib_max - self.ib_min + 1 ns_band = self.ib_win.shape[1] ne = len(emesh) dos = np.zeros((ne, ns, nion, nlm)) w_k = np.zeros((nk, nb_max, ns, nion, nlm), dtype=np.complex128) for isp in xrange(ns): for ik in xrange(nk): is_b = min(isp, ns_band) ib1 = self.ib_win[ik, is_b, 0] ib2 = self.ib_win[ik, is_b, 1] + 1 for ib_g in xrange(ib1, ib2): for io in xrange(nion): # Note the difference between 'ib' and 'ibn': # 'ib' counts from 0 to 'nb_k - 1' # 'ibn' counts from 'ib1 - ib_min' to 'ib2 - ib_min' ib = ib_g - ib1 ibn = ib_g - self.ib_min proj_k = self.proj_win[io, isp, ik, :, ib] w_k[ik, ib, isp, io, :] = proj_k * proj_k.conj() # eigv_ef = el_struct.eigvals[ik, ib, isp] - el_struct.efermi itt = el_struct.kmesh['itet'].T # k-indices are starting from 0 in Python itt[1:, :] -= 1 for isp in xrange(ns): for ib, eigk in enumerate(el_struct.eigvals[:, self.ib_min:self.ib_max+1, isp].T): for ie, e in enumerate(emesh): eigk_ef = eigk - el_struct.efermi cti = atm.dos_tetra_weights_3d(eigk_ef, e, itt) for im in xrange(nlm): for io in xrange(nion): dos[ie, isp, io, im] += np.sum((cti * w_k[itt[1:, :], ib, isp, io, im].real).sum(0) * itt[0, :]) dos *= 2 * el_struct.kmesh['volt'] # for isp in xrange(ns): # for ik, weight, occ in it.izip(it.count(), kweights, occnums[isp, :, :]): # for io in xrange(nion): # proj_k = self.proj_win[isp, io, ik, ...] # occ_mats[isp, io, :, :] += np.dot(proj_k * occ[ib1:ib2], # proj_k.conj().T).real * weight # overlaps[isp, io, :, :] += np.dot(proj_k, # proj_k.conj().T).real * weight # if not symops is None: # occ_mats = symmetrize_matrix_set(occ_mats, symops, ions, perm_map) return dos