Source code for triqs_dft_tools.converters.hk


##########################################################################
#
# TRIQS: a Toolbox for Research in Interacting Quantum Systems
#
# Copyright (C) 2011 by M. Aichhorn
#
# TRIQS is free software: you can redistribute it and/or modify it under the
# terms of the GNU General Public License as published by the Free Software
# Foundation, either version 3 of the License, or (at your option) any later
# version.
#
# TRIQS is distributed in the hope that it will be useful, but WITHOUT ANY
# WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
# FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
# details.
#
# You should have received a copy of the GNU General Public License along with
# TRIQS. If not, see <http://www.gnu.org/licenses/>.
#
##########################################################################
"""
General H(k) converter
"""

from types import *
import numpy
from h5 import *
import triqs.utility.mpi as mpi
from math import sqrt
from .converter_tools import *


[docs] class HkConverter(ConverterTools): """ Conversion from general H(k) file to an hdf5 file that can be used as input for the SumKDFT class. """
[docs] def __init__(self, filename, hdf_filename=None, dft_subgrp='dft_input', symmcorr_subgrp='dft_symmcorr_input', repacking=False): """ Initialise the class. Parameters ---------- filename : string Name of file containing the H(k) and other relevant data. hdf_filename : string, optional Name of hdf5 archive to be created. dft_subgrp : string, optional Name of subgroup storing necessary DFT data. symmcorr_subgrp : string, optional Name of subgroup storing correlated-shell symmetry data. The group is actually empty; it is just included for compatibility. repacking : boolean, optional Does the hdf5 archive need to be repacked to save space? """ assert isinstance(filename, str), "HkConverter: filename must be a filename." if hdf_filename is None: hdf_filename = filename + '.h5' self.hdf_file = hdf_filename self.dft_file = filename self.dft_subgrp = dft_subgrp self.symmcorr_subgrp = symmcorr_subgrp self.fortran_to_replace = {'D': 'E', '(': ' ', ')': ' ', ',': ' '} # Checks if h5 file is there and repacks it if wanted: import os.path if (os.path.exists(self.hdf_file) and repacking): ConverterTools.repack(self)
[docs] def convert_dft_input(self, first_real_part_matrix=True, only_upper_triangle=False, weights_in_file=False): """ Reads the appropriate files and stores the data for the dft_subgrp in the hdf5 archive. Parameters ---------- first_real_part_matrix : boolean, optional Should all the real components for given k be read in first, followed by the imaginary parts? only_upper_triangle : boolean, optional Should only the upper triangular part of H(k) be read in? weights_in_file : boolean, optional Are the k-point weights to be read in? """ # Read and write only on the master node if not (mpi.is_master_node()): return mpi.report("Reading input from %s..." % self.dft_file) # R is a generator : each R.Next() will return the next number in the # file R = ConverterTools.read_fortran_file( self, self.dft_file, self.fortran_to_replace) try: # the energy conversion factor is 1.0, we assume eV in files energy_unit = 1.0 # read the number of k points n_k = int(next(R)) k_dep_projection = 0 SP = 0 # no spin-polarision SO = 0 # no spin-orbit # total charge below energy window is set to 0 charge_below = 0.0 # density required, for setting the chemical potential density_required = next(R) symm_op = 0 # No symmetry groups for the k-sum # the information on the non-correlated shells is needed for # defining dimension of matrices: # number of shells considered in the Wanniers n_shells = int(next(R)) # corresponds to index R in formulas # now read the information about the shells (atom, sort, l, dim): shell_entries = ['atom', 'sort', 'l', 'dim'] shells = [{name: int(val) for name, val in zip( shell_entries, R)} for ish in range(n_shells)] # number of corr. shells (e.g. Fe d, Ce f) in the unit cell, n_corr_shells = int(next(R)) # corresponds to index R in formulas # now read the information about the shells (atom, sort, l, dim, SO # flag, irep): corr_shell_entries = ['atom', 'sort', 'l', 'dim','SO','irep'] corr_shells = [{name: int(val) for name, val in zip( corr_shell_entries, R)} for icrsh in range(n_corr_shells)] # determine the number of inequivalent correlated shells and maps, # needed for further reading [n_inequiv_shells, corr_to_inequiv, inequiv_to_corr] = ConverterTools.det_shell_equivalence(self, corr_shells) use_rotations = 0 rot_mat = [numpy.identity( corr_shells[icrsh]['dim'], complex) for icrsh in range(n_corr_shells)] rot_mat_time_inv = [0 for i in range(n_corr_shells)] # Representative representations are read from file n_reps = [1 for i in range(n_inequiv_shells)] dim_reps = [0 for i in range(n_inequiv_shells)] T = [] for ish in range(n_inequiv_shells): # number of representatives ("subsets"), e.g. t2g and eg n_reps[ish] = int(next(R)) dim_reps[ish] = [int(next(R)) for i in range( n_reps[ish])] # dimensions of the subsets # The transformation matrix: # is of dimension 2l+1, it is taken to be standard d (as in # Wien2k) ll = 2 * corr_shells[inequiv_to_corr[ish]]['l'] + 1 lmax = ll * (corr_shells[inequiv_to_corr[ish]]['SO'] + 1) T.append(numpy.zeros([lmax, lmax], complex)) T[ish] = numpy.array([[0.0, 0.0, 1.0, 0.0, 0.0], [1.0 / sqrt(2.0), 0.0, 0.0, 0.0, 1.0 / sqrt(2.0)], [-1.0 / sqrt(2.0), 0.0, 0.0, 0.0, 1.0 / sqrt(2.0)], [0.0, 1.0 / sqrt(2.0), 0.0, -1.0 / sqrt(2.0), 0.0], [0.0, 1.0 / sqrt(2.0), 0.0, 1.0 / sqrt(2.0), 0.0]]) # Spin blocks to be read: # number of spins to read for Norbs and Ham, NOT Projectors n_spin_blocs = SP + 1 - SO # define the number of n_orbitals for all k points: it is the # number of total bands and independent of k! n_orbitals = numpy.ones( [n_k, n_spin_blocs], int) * sum([sh['dim'] for sh in shells]) # Initialise the projectors: proj_mat = numpy.zeros([n_k, n_spin_blocs, n_corr_shells, max( [crsh['dim'] for crsh in corr_shells]), numpy.max(n_orbitals)], complex) # Read the projectors from the file: for ik in range(n_k): for icrsh in range(n_corr_shells): for isp in range(n_spin_blocs): # calculate the offset: offset = 0 n_orb = 0 for ish in range(n_shells): if (n_orb == 0): if (shells[ish]['atom'] == corr_shells[icrsh]['atom']) and (shells[ish]['sort'] == corr_shells[icrsh]['sort']): n_orb = corr_shells[icrsh]['dim'] else: offset += shells[ish]['dim'] proj_mat[ik, isp, icrsh, 0:n_orb, offset:offset + n_orb] = numpy.identity(n_orb) # now define the arrays for weights and hopping ... # w(k_index), default normalisation bz_weights = numpy.ones([n_k], float) / float(n_k) hopping = numpy.zeros([n_k, n_spin_blocs, numpy.max( n_orbitals), numpy.max(n_orbitals)], complex) if (weights_in_file): # weights in the file for ik in range(n_k): bz_weights[ik] = next(R) # if the sum over spins is in the weights, take it out again!! sm = sum(bz_weights) bz_weights[:] /= sm # Grab the H for isp in range(n_spin_blocs): for ik in range(n_k): n_orb = n_orbitals[ik, isp] # first read all real components for given k, then read # imaginary parts if (first_real_part_matrix): for i in range(n_orb): if (only_upper_triangle): istart = i else: istart = 0 for j in range(istart, n_orb): hopping[ik, isp, i, j] = next(R) for i in range(n_orb): if (only_upper_triangle): istart = i else: istart = 0 for j in range(istart, n_orb): hopping[ik, isp, i, j] += next(R) * 1j if ((only_upper_triangle)and(i != j)): hopping[ik, isp, j, i] = hopping[ ik, isp, i, j].conjugate() else: # read (real,im) tuple for i in range(n_orb): if (only_upper_triangle): istart = i else: istart = 0 for j in range(istart, n_orb): hopping[ik, isp, i, j] = next(R) hopping[ik, isp, i, j] += next(R) * 1j if ((only_upper_triangle)and(i != j)): hopping[ik, isp, j, i] = hopping[ ik, isp, i, j].conjugate() # keep some things that we need for reading parproj: things_to_set = ['n_shells', 'shells', 'n_corr_shells', 'corr_shells', 'n_spin_blocs', 'n_orbitals', 'n_k', 'SO', 'SP', 'energy_unit'] for it in things_to_set: setattr(self, it, locals()[it]) except StopIteration: # a more explicit error if the file is corrupted. raise "HK Converter : reading file dft_file failed!" R.close() #new variable: dft_code - this determines which DFT code the inputs come from. #used for certain routines within dft_tools if treating the inputs differently is required. dft_code = 'hk' # Save to the HDF5: with HDFArchive(self.hdf_file, 'a') as ar: if not (self.dft_subgrp in ar): ar.create_group(self.dft_subgrp) things_to_save = ['energy_unit', 'n_k', 'k_dep_projection', 'SP', 'SO', 'charge_below', 'density_required', 'symm_op', 'n_shells', 'shells', 'n_corr_shells', 'corr_shells', 'use_rotations', 'rot_mat', 'rot_mat_time_inv', 'n_reps', 'dim_reps', 'T', 'n_orbitals', 'proj_mat', 'bz_weights', 'hopping', 'n_inequiv_shells', 'corr_to_inequiv', 'inequiv_to_corr', 'dft_code'] for it in things_to_save: ar[self.dft_subgrp][it] = locals()[it]