triqs_modest.module.U_matrix_in_spherical_basis
- triqs_modest.module.U_matrix_in_spherical_basis()
Function dispatched to the following (C++) functions:
[1] (l: int, U_int: float, J_hund: float) -> ndarray[float, 4]
Construct a four-index Coulomb tensor in the basis of spherical harmonics.
We typically construct the four-index Coulomb tensor in the basis of spherical harmonics, $$ U_{m_{1}m_{2}m_{3}m_{4}}^{{spherical}} = _{k=0}^{2l} F_{k} (l, k, m_{1}, m_{2}, m_{3}, m_{4}),$$ where $F_{k}$ are radial Slater integrals and
Utility functions for creating and working with the four index Coulomb tensor. @ {
denote angular Racah-Wigner numbers for a spherically symmetric interaction tensor.
- Parameters
- l:
angular quantum number
- U_int:
screend Hubbard interaction
- J_hund:
Hund’s coupling
- Returns
nda::array<double, 4>