TRIQS/triqs_modest 3.3.0
Brillouin zone summation
|
Generic root finder methods for finding the roots of a scalar function \(f(x)\).
Functions | |
std::pair< double, double > | triqs::bisection (std::function< double(double)> f, double x_low, double x_high, double y_target, double precision, long max_loops, std::string x_name, std::string y_name, bool verbosity) |
bisection algorithm | |
std::pair< double, double > | triqs::dichotomy (std::function< double(double)> f, double x_low, double x_high, double y_target, double precision, long max_loops, std::string x_name, std::string y_name, bool verbosity) |
dichotomy algorithm | |
std::pair< double, double > | triqs::find_bounds (std::function< double(double)> f, double x_init, double y_value, double delta_x, double precision, long max_loops=1000, bool verbosity=false) |
find upper and lower bounds of f(x) | |
|
inline |
#include <triqs_modest/root_finder.hpp>
bisection algorithm
f | function f(x) |
x_low | lower bound on f(x) |
x_high | upper bound on f(x) |
y_target | target value for f(x) = y_target |
precision | f(x) - y_target < precision |
max_loops | maximum number of attempts |
x_name | Name of x variable |
y_name | Name of y variable |
verbosity | Print progress |
Definition at line 127 of file root_finder.hpp.
|
inline |
#include <triqs_modest/root_finder.hpp>
dichotomy algorithm
f | function f(x) |
x_low | lower bound on x |
x_high | upper bound on x |
y_target | target value for f(x) |
precision | f(x) - y_target < precision |
max_loops | maxmimum number of iterations |
x_name | Name of x variable |
y_name | Name of y variable |
verbosity | Print progress |
Definition at line 70 of file root_finder.hpp.
|
inline |
#include <triqs_modest/root_finder.hpp>
find upper and lower bounds of f(x)
f | function of f(x) |
x_init | initial guess x |
y_value | target value y = f(x) |
delta_x | x increment |
precision | f(x) - y_value < precision |
max_loops | maximum number of loops |
verbosity | verbosity of the algorithm |
Definition at line 26 of file root_finder.hpp.