TRIQS/nda 1.3.0
Multi-dimensional array library for C++
Loading...
Searching...
No Matches
basic_array.hpp
Go to the documentation of this file.
1// Copyright (c) 2018 Commissariat à l'énergie atomique et aux énergies alternatives (CEA)
2// Copyright (c) 2018 Centre national de la recherche scientifique (CNRS)
3// Copyright (c) 2018-2023 Simons Foundation
4//
5// Licensed under the Apache License, Version 2.0 (the "License");
6// you may not use this file except in compliance with the License.
7// You may obtain a copy of the License at
8//
9// http://www.apache.org/licenses/LICENSE-2.0.txt
10//
11// Unless required by applicable law or agreed to in writing, software
12// distributed under the License is distributed on an "AS IS" BASIS,
13// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14// See the License for the specific language governing permissions and
15// limitations under the License.
16//
17// Authors: Olivier Parcollet, Nils Wentzell
18
24#pragma once
25
26#include "./accessors.hpp"
28#include "./basic_functions.hpp"
29#include "./concepts.hpp"
30#include "./exceptions.hpp"
31#include "./iterators.hpp"
32#include "./layout/for_each.hpp"
34#include "./layout/range.hpp"
36#include "./macros.hpp"
38#include "./mem/memcpy.hpp"
39#include "./mem/policies.hpp"
40#include "./stdutil/array.hpp"
41#include "./traits.hpp"
42
43#include <algorithm>
44#include <array>
45#include <complex>
46#include <concepts>
47#include <initializer_list>
48#include <random>
49#include <ranges>
50#include <type_traits>
51#include <utility>
52
53#ifdef NDA_ENFORCE_BOUNDCHECK
54#include <exception>
55#include <iostream>
56#endif // NDA_ENFORCE_BOUNDCHECK
57
58namespace nda {
59
112 template <typename ValueType, int Rank, typename LayoutPolicy, char Algebra, typename ContainerPolicy>
114 // Compile-time checks.
115 static_assert(!std::is_const_v<ValueType>, "Error in nda::basic_array: ValueType cannot be const");
116 static_assert((Algebra != 'N'), "Internal error in nda::basic_array: Algebra 'N' not supported");
117 static_assert((Algebra != 'M') or (Rank == 2), "Internal error in nda::basic_array: Algebra 'M' requires a rank 2 array");
118 static_assert((Algebra != 'V') or (Rank == 1), "Internal error in nda::basic_array: Algebra 'V' requires a rank 1 array");
119
120 public:
122 using value_type = ValueType;
123
125 using layout_policy_t = LayoutPolicy;
126
128 using layout_t = typename LayoutPolicy::template mapping<Rank>;
129
131 using container_policy_t = ContainerPolicy;
132
134 using storage_t = typename ContainerPolicy::template handle<ValueType>;
135
138
140 static constexpr int rank = Rank;
141
142 // Compile-time check.
143 static_assert(has_contiguous(layout_t::layout_prop), "Error in nda::basic_array: Memory layout has to be contiguous");
144
145 private:
146 // Type of the array itself.
147 using self_t = basic_array;
148
149 // Type of the accessor policy for views (no no_alias_accessor).
151
152 // Type of the owning policy for views.
154
155 // Constexpr variable that is true if the value_type is const (never for basic_array).
156 static constexpr bool is_const = false;
157
158 // Constexpr variable that is true if the array is a view (never for basic_array).
159 static constexpr bool is_view = false;
160
161 // Memory layout of the array, i.e. the nda::idx_map.
162 layout_t lay;
163
164 // Memory handle of the array.
165 storage_t sto;
166
167 // Construct an array with a given shape and initialize the memory with zeros.
168 template <std::integral Int = long>
169 basic_array(std::array<Int, Rank> const &shape, mem::init_zero_t) : lay{shape}, sto{lay.size(), mem::init_zero} {}
170
171 public:
176 auto as_array_view() { return basic_array_view<ValueType, Rank, LayoutPolicy, 'A', AccessorPolicy, OwningPolicy>{*this}; };
177
182 auto as_array_view() const { return basic_array_view<const ValueType, Rank, LayoutPolicy, 'A', AccessorPolicy, OwningPolicy>{*this}; };
183
185 [[deprecated]] auto transpose()
186 requires(Rank == 2)
187 {
188 return permuted_indices_view<encode(std::array<int, 2>{1, 0})>(*this);
189 }
190
192 [[deprecated]] auto transpose() const
193 requires(Rank == 2)
194 {
195 return permuted_indices_view<encode(std::array<int, 2>{1, 0})>(*this);
196 }
197
199 basic_array() {}; // NOLINT (user-defined constructor to avoid value initialization of the sso buffer)
200
203
205 explicit basic_array(basic_array const &a) = default;
206
216 template <char A, typename CP>
217 explicit basic_array(basic_array<ValueType, Rank, LayoutPolicy, A, CP> a) noexcept : lay(a.indexmap()), sto(std::move(a.storage())) {}
218
228 template <std::integral... Ints>
229 requires(sizeof...(Ints) == Rank)
230 explicit basic_array(Ints... is) {
231 // setting the layout and storage in the constructor body improves error messages for wrong # of args
232 lay = layout_t{std::array{long(is)...}}; // NOLINT (for better error messages)
233 sto = storage_t{lay.size()}; // NOLINT (for better error messages)
234 }
235
244 template <std::integral Int, typename RHS>
245 explicit basic_array(Int sz, RHS const &val)
246 requires((Rank == 1 and is_scalar_for_v<RHS, basic_array>))
247 : lay(layout_t{std::array{long(sz)}}), sto{lay.size()} {
248 assign_from_scalar(val);
249 }
250
259 template <std::integral Int = long>
260 explicit basic_array(std::array<Int, Rank> const &shape)
261 requires(std::is_default_constructible_v<ValueType>)
262 : lay(shape), sto(lay.size()) {}
263
271 explicit basic_array(layout_t const &layout)
272 requires(std::is_default_constructible_v<ValueType>)
273 : lay{layout}, sto{lay.size()} {}
274
283 explicit basic_array(layout_t const &layout, storage_t &&storage) noexcept : lay{layout}, sto{std::move(storage)} {}
284
291 template <ArrayOfRank<Rank> A>
292 requires(HasValueTypeConstructibleFrom<A, value_type>)
293 basic_array(A const &a) : lay(a.shape()), sto{lay.size(), mem::do_not_initialize} {
294 static_assert(std::is_constructible_v<value_type, get_value_t<A>>, "Error in nda::basic_array: Incompatible value types in constructor");
295 if constexpr (std::is_trivial_v<ValueType> or is_complex_v<ValueType>) {
296 // trivial and complex value types can use the optimized assign_from_ndarray
297 assign_from_ndarray(a);
298 } else {
299 // general value types may not be default constructible -> use placement new
300 nda::for_each(lay.lengths(), [&](auto const &...is) { new (sto.data() + lay(is...)) ValueType{a(is...)}; });
301 }
302 }
303
313 template <ArrayInitializer<basic_array> Initializer> // can not be explicit
314 basic_array(Initializer const &initializer) : basic_array{initializer.shape()} {
315 initializer.invoke(*this);
316 }
317
318 private:
319 // Get the corresponding shape from an initializer list.
320 static std::array<long, 1> shape_from_init_list(std::initializer_list<ValueType> const &l) noexcept { return {long(l.size())}; }
321
322 // Get the corresponding shape from a nested initializer list.
323 template <typename L>
324 static auto shape_from_init_list(std::initializer_list<L> const &l) noexcept {
325 const auto [min, max] = std::minmax_element(std::begin(l), std::end(l), [](auto &&x, auto &&y) { return x.size() < y.size(); });
326 EXPECTS_WITH_MESSAGE(min->size() == max->size(),
327 "Error in nda::basic_array: Arrays can only be initialized with rectangular initializer lists");
328 return stdutil::front_append(shape_from_init_list(*max), long(l.size()));
329 }
330
331 public:
336 basic_array(std::initializer_list<ValueType> const &l)
337 requires(Rank == 1)
338 : lay(std::array<long, 1>{long(l.size())}), sto{lay.size(), mem::do_not_initialize} {
339 long i = 0;
340 for (auto const &x : l) { new (sto.data() + lay(i++)) ValueType{x}; }
341 }
342
347 basic_array(std::initializer_list<std::initializer_list<ValueType>> const &l2)
348 requires(Rank == 2)
349 : lay(shape_from_init_list(l2)), sto{lay.size(), mem::do_not_initialize} {
350 long i = 0, j = 0;
351 for (auto const &l1 : l2) {
352 for (auto const &x : l1) { new (sto.data() + lay(i, j++)) ValueType{x}; }
353 j = 0;
354 ++i;
355 }
356 }
357
362 basic_array(std::initializer_list<std::initializer_list<std::initializer_list<ValueType>>> const &l3)
363 requires(Rank == 3)
364 : lay(shape_from_init_list(l3)), sto{lay.size(), mem::do_not_initialize} {
365 long i = 0, j = 0, k = 0;
366 for (auto const &l2 : l3) {
367 for (auto const &l1 : l2) {
368 for (auto const &x : l1) { new (sto.data() + lay(i, j, k++)) ValueType{x}; }
369 k = 0;
370 ++j;
371 }
372 j = 0;
373 ++i;
374 }
375 }
376
386 template <char A2>
388 requires(Rank == 2)
389 : basic_array{a.indexmap(), std::move(a).storage()} {}
390
398 template <std::integral Int = long>
399 static basic_array zeros(std::array<Int, Rank> const &shape)
400 requires(std::is_standard_layout_v<ValueType> && std::is_trivially_copyable_v<ValueType>)
401 {
403 }
404
412 template <std::integral... Ints>
413 static basic_array zeros(Ints... is)
414 requires(sizeof...(Ints) == Rank)
415 {
416 return zeros(std::array<long, Rank>{is...});
417 }
418
426 template <std::integral Int = long>
427 static basic_array ones(std::array<Int, Rank> const &shape)
429 {
431 res() = ValueType{1};
432 return res;
433 }
434
442 template <std::integral... Ints>
443 static basic_array ones(Ints... is)
444 requires(sizeof...(Ints) == Rank)
445 {
446 return ones(std::array<long, Rank>{is...});
447 }
448
459 template <std::integral Int = long>
460 static basic_array rand(std::array<Int, Rank> const &shape)
461 requires(std::is_floating_point_v<ValueType> or nda::is_complex_v<ValueType>)
462 {
463 using namespace std::complex_literals;
464 auto static gen = std::mt19937(std::random_device{}());
465 auto static dist = std::uniform_real_distribution<>(0.0, 1.0);
466 auto res = basic_array{shape};
467 if constexpr (nda::is_complex_v<ValueType>)
468 for (auto &x : res) x = dist(gen) + 1i * dist(gen);
469 else
470 for (auto &x : res) x = dist(gen);
471 return res;
472 }
473
484 template <std::integral... Ints>
485 static basic_array rand(Ints... is)
486 requires(sizeof...(Ints) == Rank)
487 {
488 return rand(std::array<long, Rank>{is...});
489 }
490
493
495 basic_array &operator=(basic_array const &) = default;
496
507 template <char A, typename CP>
509 *this = basic_array{rhs};
510 return *this;
511 }
512
522 template <ArrayOfRank<Rank> RHS>
523 basic_array &operator=(RHS const &rhs) {
524 resize(rhs.shape());
525 assign_from_ndarray(rhs);
526 return *this;
527 }
528
539 template <typename RHS>
540 basic_array &operator=(RHS const &rhs) noexcept
542 {
543 assign_from_scalar(rhs);
544 return *this;
545 }
546
556 template <ArrayInitializer<basic_array> Initializer>
557 basic_array &operator=(Initializer const &initializer) {
558 resize(initializer.shape());
559 initializer.invoke(*this);
560 return *this;
561 }
562
573 template <std::integral... Ints>
574 void resize(Ints const &...is) {
575 static_assert(std::is_copy_constructible_v<ValueType>, "Error in nda::basic_array: Resizing requires the value_type to be copy constructible");
576 static_assert(sizeof...(is) == Rank, "Error in nda::basic_array: Resizing requires exactly Rank arguments");
577 resize(std::array<long, Rank>{long(is)...});
578 }
579
589 [[gnu::noinline]] void resize(std::array<long, Rank> const &shape) {
590 lay = layout_t(shape);
591 if (sto.is_null() or (sto.size() != lay.size())) sto = storage_t{lay.size()};
592 }
593
594// include common functionality of arrays and views
595// Copyright (c) 2019-2024 Simons Foundation
596//
597// Licensed under the Apache License, Version 2.0 (the "License");
598// you may not use this file except in compliance with the License.
599// You may obtain a copy of the License at
600//
601// http://www.apache.org/licenses/LICENSE-2.0.txt
602//
603// Unless required by applicable law or agreed to in writing, software
604// distributed under the License is distributed on an "AS IS" BASIS,
605// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
606// See the License for the specific language governing permissions and
607// limitations under the License.
608//
609// Authors: Thomas Hahn, Miguel Morales, Olivier Parcollet, Nils Wentzell
610
615[[nodiscard]] constexpr auto const &indexmap() const noexcept { return lay; }
616
621[[nodiscard]] storage_t const &storage() const & noexcept { return sto; }
622
627[[nodiscard]] storage_t &storage() & noexcept { return sto; }
628
633[[nodiscard]] storage_t storage() && noexcept { return std::move(sto); }
634
641[[nodiscard]] constexpr auto stride_order() const noexcept { return lay.stride_order; }
642
647[[nodiscard]] ValueType const *data() const noexcept { return sto.data(); }
648
653[[nodiscard]] ValueType *data() noexcept { return sto.data(); }
654
659[[nodiscard]] auto const &shape() const noexcept { return lay.lengths(); }
660
665[[nodiscard]] auto const &strides() const noexcept { return lay.strides(); }
666
671[[nodiscard]] long size() const noexcept { return lay.size(); }
672
677[[nodiscard]] long is_contiguous() const noexcept { return lay.is_contiguous(); }
678
683[[nodiscard]] bool empty() const { return sto.is_null(); }
684
686[[nodiscard]] bool is_empty() const noexcept { return sto.is_null(); }
687
692[[nodiscard]] long extent(int i) const noexcept {
693#ifdef NDA_ENFORCE_BOUNDCHECK
694 if (i < 0 || i >= rank) {
695 std::cerr << "Error in extent: Dimension " << i << " is incompatible with array of rank " << rank << std::endl;
696 std::terminate();
697 }
698#endif
699 return lay.lengths()[i];
700}
701
703[[nodiscard]] long shape(int i) const noexcept { return extent(i); }
704
709[[nodiscard]] auto indices() const noexcept { return itertools::product_range(shape()); }
710
715static constexpr bool is_stride_order_C() noexcept { return layout_t::is_stride_order_C(); }
716
721static constexpr bool is_stride_order_Fortran() noexcept { return layout_t::is_stride_order_Fortran(); }
722
732decltype(auto) operator()(_linear_index_t idx) const noexcept {
733 if constexpr (layout_t::layout_prop == layout_prop_e::strided_1d)
734 return sto[idx.value * lay.min_stride()];
735 else if constexpr (layout_t::layout_prop == layout_prop_e::contiguous)
736 return sto[idx.value];
737 else
738 static_assert(always_false<layout_t>, "Internal error in array/view: Calling this type with a _linear_index_t is not allowed");
739}
740
742decltype(auto) operator()(_linear_index_t idx) noexcept {
743 if constexpr (layout_t::layout_prop == layout_prop_e::strided_1d)
744 return sto[idx.value * lay.min_stride()];
745 else if constexpr (layout_t::layout_prop == layout_prop_e::contiguous)
746 return sto[idx.value];
747 else
748 static_assert(always_false<layout_t>, "Internal error in array/view: Calling this type with a _linear_index_t is not allowed");
749}
750
751private:
752// Constexpr variable that is true if bounds checking is disabled.
753#ifdef NDA_ENFORCE_BOUNDCHECK
754static constexpr bool has_no_boundcheck = false;
755#else
756static constexpr bool has_no_boundcheck = true;
757#endif
758
759public:
776template <char ResultAlgebra, bool SelfIsRvalue, typename Self, typename... Ts>
777FORCEINLINE static decltype(auto) call(Self &&self, Ts const &...idxs) noexcept(has_no_boundcheck) {
778 // resulting value type
779 using r_v_t = std::conditional_t<std::is_const_v<std::remove_reference_t<Self>>, ValueType const, ValueType>;
780
781 // behavior depends on the given arguments
782 if constexpr (clef::is_any_lazy<Ts...>) {
783 // if there are lazy arguments, e.g. as in A(i_) << i_, a lazy expression is returned
784 return clef::make_expr_call(std::forward<Self>(self), idxs...);
785 } else if constexpr (sizeof...(Ts) == 0) {
786 // if no arguments are given, a full view is returned
788 } else {
789 // otherwise we check the arguments and either access a single element or make a slice
790 static_assert(((layout_t::template argument_is_allowed_for_call_or_slice<Ts> + ...) > 0),
791 "Error in array/view: Slice arguments must be convertible to range, ellipsis, or long (or string if the layout permits it)");
792
793 // number of arguments convertible to long
794 static constexpr int n_args_long = (layout_t::template argument_is_allowed_for_call<Ts> + ...);
795
796 if constexpr (n_args_long == rank) {
797 // access a single element
798 long offset = self.lay(idxs...);
799 if constexpr (is_view or not SelfIsRvalue) {
800 // if the calling object is a view or an lvalue, we return a reference
801 return AccessorPolicy::template accessor<ValueType>::access(self.sto.data(), offset);
802 } else {
803 // otherwise, we return a copy of the value
804 return ValueType{self.sto[offset]};
805 }
806 } else {
807 // access a slice of the view/array
808 auto const [offset, idxm] = self.lay.slice(idxs...);
809 static constexpr auto res_rank = decltype(idxm)::rank();
810 // resulting algebra
811 static constexpr char newAlgebra = (ResultAlgebra == 'M' and (res_rank == 1) ? 'V' : ResultAlgebra);
812 // resulting layout policy
813 using r_layout_p = typename detail::layout_to_policy<std::decay_t<decltype(idxm)>>::type;
815 }
816 }
817}
818
819public:
841template <typename... Ts>
842FORCEINLINE decltype(auto) operator()(Ts const &...idxs) const & noexcept(has_no_boundcheck) {
843 static_assert((rank == -1) or (sizeof...(Ts) == rank) or (sizeof...(Ts) == 0) or (ellipsis_is_present<Ts...> and (sizeof...(Ts) <= rank + 1)),
844 "Error in array/view: Incorrect number of parameters in call operator");
845 return call<Algebra, false>(*this, idxs...);
846}
847
849template <typename... Ts>
850FORCEINLINE decltype(auto) operator()(Ts const &...idxs) & noexcept(has_no_boundcheck) {
851 static_assert((rank == -1) or (sizeof...(Ts) == rank) or (sizeof...(Ts) == 0) or (ellipsis_is_present<Ts...> and (sizeof...(Ts) <= rank + 1)),
852 "Error in array/view: Incorrect number of parameters in call operator");
853 return call<Algebra, false>(*this, idxs...);
854}
855
857template <typename... Ts>
858FORCEINLINE decltype(auto) operator()(Ts const &...idxs) && noexcept(has_no_boundcheck) {
859 static_assert((rank == -1) or (sizeof...(Ts) == rank) or (sizeof...(Ts) == 0) or (ellipsis_is_present<Ts...> and (sizeof...(Ts) <= rank + 1)),
860 "Error in array/view: Incorrect number of parameters in call operator");
861 return call<Algebra, true>(*this, idxs...);
862}
863
881template <typename T>
882decltype(auto) operator[](T const &idx) const & noexcept(has_no_boundcheck) {
883 static_assert((rank == 1), "Error in array/view: Subscript operator is only available for rank 1 views/arrays in C++17/20");
884 return call<Algebra, false>(*this, idx);
885}
886
888template <typename T>
889decltype(auto) operator[](T const &x) & noexcept(has_no_boundcheck) {
890 static_assert((rank == 1), "Error in array/view: Subscript operator is only available for rank 1 views/arrays in C++17/20");
891 return call<Algebra, false>(*this, x);
892}
893
895template <typename T>
896decltype(auto) operator[](T const &x) && noexcept(has_no_boundcheck) {
897 static_assert((rank == 1), "Error in array/view: Subscript operator is only available for rank 1 views/arrays in C++17/20");
898 return call<Algebra, true>(*this, x);
899}
900
902static constexpr int iterator_rank = (has_strided_1d(layout_t::layout_prop) ? 1 : Rank);
903
906
909
910private:
911// Make an iterator for the view/array depending on its type.
912template <typename Iterator>
913[[nodiscard]] auto make_iterator(bool at_end) const noexcept {
914 if constexpr (iterator_rank == Rank) {
915 // multi-dimensional iterator
916 if constexpr (layout_t::is_stride_order_C()) {
917 // C-order case (array_iterator already traverses the data in C-order)
918 return Iterator{indexmap().lengths(), indexmap().strides(), sto.data(), at_end};
919 } else {
920 // general case (we need to permute the shape and the strides according to the stride order of the layout)
921 return Iterator{nda::permutations::apply(layout_t::stride_order, indexmap().lengths()),
922 nda::permutations::apply(layout_t::stride_order, indexmap().strides()), sto.data(), at_end};
923 }
924 } else {
925 // 1-dimensional iterator
926 return Iterator{std::array<long, 1>{size()}, std::array<long, 1>{indexmap().min_stride()}, sto.data(), at_end};
927 }
928}
929
930public:
932[[nodiscard]] const_iterator begin() const noexcept { return make_iterator<const_iterator>(false); }
933
935[[nodiscard]] const_iterator cbegin() const noexcept { return make_iterator<const_iterator>(false); }
936
938iterator begin() noexcept { return make_iterator<iterator>(false); }
939
941[[nodiscard]] const_iterator end() const noexcept { return make_iterator<const_iterator>(true); }
942
944[[nodiscard]] const_iterator cend() const noexcept { return make_iterator<const_iterator>(true); }
945
947iterator end() noexcept { return make_iterator<iterator>(true); }
948
961template <typename RHS>
962auto &operator+=(RHS const &rhs) noexcept {
963 static_assert(not is_const, "Error in array/view: Can not assign to a const view");
964 return operator=(*this + rhs);
965}
966
979template <typename RHS>
980auto &operator-=(RHS const &rhs) noexcept {
981 static_assert(not is_const, "Error in array/view: Can not assign to a const view");
982 return operator=(*this - rhs);
983}
984
997template <typename RHS>
998auto &operator*=(RHS const &rhs) noexcept {
999 static_assert(not is_const, "Error in array/view: Can not assign to a const view");
1000 return operator=((*this) * rhs);
1001}
1002
1015template <typename RHS>
1016auto &operator/=(RHS const &rhs) noexcept {
1017 static_assert(not is_const, "Error in array/view: Can not assign to a const view");
1018 return operator=(*this / rhs);
1019}
1020
1029template <std::ranges::contiguous_range R>
1030auto &operator=(R const &rhs) noexcept
1031 requires(Rank == 1 and not MemoryArray<R>)
1032{
1033 *this = basic_array_view{rhs};
1034 return *this;
1035}
1036
1037private:
1038// Implementation of the assignment from an n-dimensional array type.
1039template <typename RHS>
1040void assign_from_ndarray(RHS const &rhs) { // FIXME noexcept {
1041#ifdef NDA_ENFORCE_BOUNDCHECK
1042 if (this->shape() != rhs.shape())
1043 NDA_RUNTIME_ERROR << "Error in assign_from_ndarray: Size mismatch:"
1044 << "\n LHS.shape() = " << this->shape() << "\n RHS.shape() = " << rhs.shape();
1045#endif
1046 // compile-time check if assignment is possible
1047 static_assert(std::is_assignable_v<value_type &, get_value_t<RHS>>, "Error in assign_from_ndarray: Incompatible value types");
1048
1049 // are both operands nda::MemoryArray types?
1050 static constexpr bool both_in_memory = MemoryArray<self_t> and MemoryArray<RHS>;
1051
1052 // do both operands have the same stride order?
1053 static constexpr bool same_stride_order = get_layout_info<self_t>.stride_order == get_layout_info<RHS>.stride_order;
1054
1055 // prefer optimized options if possible
1056 if constexpr (both_in_memory and same_stride_order) {
1057 if (rhs.empty()) return;
1058 // are both operands strided in 1d?
1059 static constexpr bool both_1d_strided = has_layout_strided_1d<self_t> and has_layout_strided_1d<RHS>;
1060 if constexpr (mem::on_host<self_t, RHS> and both_1d_strided) {
1061 // vectorizable copy on host
1062 for (long i = 0; i < size(); ++i) (*this)(_linear_index_t{i}) = rhs(_linear_index_t{i});
1063 return;
1065 // check for block-layout and use mem::memcpy2D if possible
1066 auto bl_layout_dst = get_block_layout(*this);
1067 auto bl_layout_src = get_block_layout(rhs);
1068 if (bl_layout_dst && bl_layout_src) {
1069 auto [n_bl_dst, bl_size_dst, bl_str_dst] = *bl_layout_dst;
1070 auto [n_bl_src, bl_size_src, bl_str_src] = *bl_layout_src;
1071 // check that the total memory size is the same
1072 if (n_bl_dst * bl_size_dst != n_bl_src * bl_size_src) NDA_RUNTIME_ERROR << "Error in assign_from_ndarray: Incompatible block sizes";
1073 // if either destination or source consists of a single block, we can chunk it up to make the layouts compatible
1074 if (n_bl_dst == 1 && n_bl_src > 1) {
1075 n_bl_dst = n_bl_src;
1076 bl_size_dst /= n_bl_src;
1077 bl_str_dst = bl_size_dst;
1078 }
1079 if (n_bl_src == 1 && n_bl_dst > 1) {
1080 n_bl_src = n_bl_dst;
1081 bl_size_src /= n_bl_dst;
1082 bl_str_src = bl_size_src;
1083 }
1084 // copy only if block-layouts are compatible, otherwise continue to fallback
1085 if (n_bl_dst == n_bl_src && bl_size_dst == bl_size_src) {
1086 mem::memcpy2D<mem::get_addr_space<self_t>, mem::get_addr_space<RHS>>((void *)data(), bl_str_dst * sizeof(value_type), (void *)rhs.data(),
1087 bl_str_src * sizeof(value_type), bl_size_src * sizeof(value_type),
1088 n_bl_src);
1089 return;
1090 }
1091 }
1092 }
1093 }
1094 // otherwise fallback to elementwise assignment
1096 NDA_RUNTIME_ERROR << "Error in assign_from_ndarray: Fallback to elementwise assignment not implemented for arrays/views on the GPU";
1097 }
1098 nda::for_each(shape(), [this, &rhs](auto const &...args) { (*this)(args...) = rhs(args...); });
1099}
1100
1101// Implementation to fill a view/array with a constant scalar value.
1102template <typename Scalar>
1103void fill_with_scalar(Scalar const &scalar) noexcept {
1104 // we make a special implementation if the array is strided in 1d or contiguous
1105 if constexpr (has_layout_strided_1d<self_t>) {
1106 const long L = size();
1107 auto *__restrict const p = data(); // no alias possible here!
1108 if constexpr (has_contiguous_layout<self_t>) {
1109 for (long i = 0; i < L; ++i) p[i] = scalar;
1110 } else {
1111 const long stri = indexmap().min_stride();
1112 const long Lstri = L * stri;
1113 for (long i = 0; i < Lstri; i += stri) p[i] = scalar;
1114 }
1115 } else {
1116 // no compile-time memory layout guarantees
1117 for (auto &x : *this) x = scalar;
1118 }
1119}
1120
1121// Implementation of the assignment from a scalar value.
1122template <typename Scalar>
1123void assign_from_scalar(Scalar const &scalar) noexcept {
1124 static_assert(!is_const, "Error in assign_from_ndarray: Cannot assign to a const view");
1125 if constexpr (Algebra != 'M') {
1126 // element-wise assignment for non-matrix algebras
1127 fill_with_scalar(scalar);
1128 } else {
1129 // a scalar has to be interpreted as a unit matrix for matrix algebras (the scalar in the shortest diagonal)
1130 // FIXME : A priori faster to put 0 everywhere and then change the diag to avoid the if.
1131 // FIXME : Benchmark and confirm.
1133 fill_with_scalar(0);
1134 else
1135 fill_with_scalar(Scalar{0 * scalar}); // FIXME : improve this
1136 const long imax = std::min(extent(0), extent(1));
1137 for (long i = 0; i < imax; ++i) operator()(i, i) = scalar;
1138 }
1139}
1140 };
1141
1142 // Class template argument deduction guides.
1143 template <MemoryArray A>
1144 basic_array(A &&a) -> basic_array<get_value_t<A>, get_rank<A>, get_contiguous_layout_policy<get_rank<A>, get_layout_info<A>.stride_order>,
1145 get_algebra<A>, heap<mem::get_addr_space<A>>>;
1146
1147 template <Array A>
1148 basic_array(A &&a) -> basic_array<get_value_t<A>, get_rank<A>, C_layout, get_algebra<A>, heap<>>;
1149
1150} // namespace nda
Defines accessors for nda::array objects (cf. std::default_accessor).
Provides definitions and type traits involving the different memory address spaces supported by nda.
Provides utility functions for std::array.
Provides the generic class for views.
Provides basic functions to create and manipulate arrays and views.
Iterator for nda::basic_array and nda::basic_array_view types.
A generic view of a multi-dimensional array.
A generic multi-dimensional array.
auto & operator+=(RHS const &rhs) noexcept
Addition assignment operator.
basic_array(basic_array< ValueType, 2, LayoutPolicy, A2, ContainerPolicy > &&a) noexcept
Construct a 2-dimensional array from another 2-dimensional array with a different algebra.
basic_array & operator=(RHS const &rhs)
Assignment operator makes a deep copy of an nda::ArrayOfRank object.
typename ContainerPolicy::template handle< ValueType > storage_t
Type of the memory handle (see Handles).
static constexpr bool is_stride_order_Fortran() noexcept
Is the stride order of the view/array in Fortran-order?
ValueType const * data() const noexcept
Get a pointer to the actual data (in general this is not the beginning of the memory block for a view...
ValueType * data() noexcept
Get a pointer to the actual data (in general this is not the beginning of thr memory block for a view...
long shape(int i) const noexcept
const_iterator cbegin() const noexcept
Get a const iterator to the beginning of the view/array.
static constexpr int rank
Number of dimensions of the array.
basic_array(Initializer const &initializer)
Construct an array from an nda::ArrayInitializer object.
static constexpr bool is_stride_order_C() noexcept
Is the stride order of the view/array in C-order?
storage_t & storage() &noexcept
Get the data storage of the view/array.
typename LayoutPolicy::template mapping< Rank > layout_t
Type of the memory layout (an nda::idx_map).
basic_array(basic_array< ValueType, Rank, LayoutPolicy, A, CP > a) noexcept
Construct an array from another array with a different algebra and/or container policy.
auto const & strides() const noexcept
Get the strides of the view/array (see nda::idx_map for more details on how we define strides).
basic_array(Ints... is)
Construct an array with the given dimensions.
static basic_array ones(Ints... is)
Make a one-initialized array with the given dimensions.
const_iterator begin() const noexcept
Get a const iterator to the beginning of the view/array.
auto as_array_view() const
Convert the current array to a view with an 'A' (array) algebra.
basic_array & operator=(Initializer const &initializer)
Assignment operator uses an nda::ArrayInitializer to assign to the array.
long extent(int i) const noexcept
Get the extent of the ith dimension.
basic_array(std::initializer_list< ValueType > const &l)
Construct a 1-dimensional array from an initializer list.
long is_contiguous() const noexcept
Is the memory layout of the view/array contiguous?
basic_array(std::initializer_list< std::initializer_list< ValueType > > const &l2)
Construct a 2-dimensional array from a double nested initializer list.
bool empty() const
Is the view/array empty?
void resize(std::array< long, Rank > const &shape)
Resize the array to a new shape.
basic_array(Int sz, RHS const &val)
Construct a 1-dimensional array with the given size and initialize each element to the given scalar v...
static basic_array ones(std::array< Int, Rank > const &shape)
Make a one-initialized array with the given shape.
LayoutPolicy layout_policy_t
Type of the memory layout policy (see Layout policies).
constexpr auto stride_order() const noexcept
Get the stride order of the memory layout of the view/array (see nda::idx_map for more details on how...
auto & operator/=(RHS const &rhs) noexcept
Division assignment operator.
auto as_array_view()
Convert the current array to a view with an 'A' (array) algebra.
basic_array(A const &a)
Construct an array from an nda::ArrayOfRank object with the same rank by copying each element.
auto transpose() const
static basic_array zeros(Ints... is)
Make a zero-initialized array with the given dimensions.
auto indices() const noexcept
Get a range that generates all valid index tuples.
static __inline__ decltype(auto) call(Self &&self, Ts const &...idxs) noexcept(has_no_boundcheck)
Implementation of the function call operator.
void resize(Ints const &...is)
Resize the array to a new shape.
ContainerPolicy container_policy_t
Type of the container policy (see Memory policies).
storage_t storage() &&noexcept
Get the data storage of the view/array.
basic_array()
Default constructor constructs an empty array with a default constructed memory handle and layout.
bool is_empty() const noexcept
auto & operator=(R const &rhs) noexcept
Assignment operator makes a deep copy of a general contiguous range and assigns it to the 1-dimension...
storage_t const & storage() const &noexcept
Get the data storage of the view/array.
basic_array & operator=(basic_array const &)=default
Default copy assignment copies the memory handle and layout from the right hand side array.
basic_array & operator=(RHS const &rhs) noexcept
Assignment operator assigns a scalar to the array.
basic_array & operator=(basic_array< ValueType, Rank, LayoutPolicy, A, CP > const &rhs)
Assignment operator makes a deep copy of another array with a different algebra and/or container poli...
basic_array(basic_array const &a)=default
Default copy constructor copies the memory handle and layout.
basic_array(std::initializer_list< std::initializer_list< std::initializer_list< ValueType > > > const &l3)
Construct a 3-dimensional array from a triple nested initializer list.
iterator begin() noexcept
Get an iterator to the beginning of the view/array.
basic_array(layout_t const &layout)
Construct an array with the given memory layout.
static basic_array rand(Ints... is)
Make a random-initialized array with the given dimensions.
basic_array(layout_t const &layout, storage_t &&storage) noexcept
Construct an array with the given memory layout and with an existing memory handle/storage.
auto & operator-=(RHS const &rhs) noexcept
Subtraction assignment operator.
const_iterator end() const noexcept
Get a const iterator to the end of the view/array.
basic_array(basic_array &&)=default
Default move constructor moves the memory handle and layout.
basic_array(std::array< Int, Rank > const &shape)
Construct an array with the given shape.
const_iterator cend() const noexcept
Get a const iterator to the end of the view/array.
auto const & shape() const noexcept
Get the shape of the view/array.
long size() const noexcept
Get the total size of the view/array.
auto & operator*=(RHS const &rhs) noexcept
Multiplication assignment operator.
basic_array & operator=(basic_array &&)=default
Default move assignment moves the memory handle and layout from the right hand side array.
static basic_array zeros(std::array< Int, Rank > const &shape)
Make a zero-initialized array with the given shape.
constexpr auto const & indexmap() const noexcept
Get the memory layout of the view/array.
iterator end() noexcept
Get an iterator to the end of the view/array.
ValueType value_type
Type of the values in the array (can not be const).
static basic_array rand(std::array< Int, Rank > const &shape)
Make a random-initialized array with the given shape.
Check if a given type satisfies the memory array concept.
Definition concepts.hpp:248
Provides concepts for the nda library.
Provides a custom runtime error class and macros to assert conditions and throw exceptions.
Provides for_each functions for multi-dimensional arrays/views.
auto rand(std::array< Int, Rank > const &shape)
Make an array of the given shape and initialize it with random values from the uniform distribution o...
auto permuted_indices_view(A &&a)
Permute the indices/dimensions of an nda::basic_array or nda::basic_array_view.
auto zeros(std::array< Int, Rank > const &shape)
Make an array of the given shape on the given address space and zero-initialize it.
auto ones(std::array< Int, Rank > const &shape)
Make an array of the given shape and one-initialize it.
constexpr bool have_same_value_type_v
Constexpr variable that is true if all types in As have the same value type as A0.
Definition traits.hpp:196
auto make_expr_call(F &&f, Args &&...args)
Create a function call expression from a callable object and a list of arguments.
Definition make_lazy.hpp:74
constexpr bool is_any_lazy
Constexpr variable that is true if any of the given types is lazy.
Definition utils.hpp:157
constexpr bool ellipsis_is_present
Constexpr variable that is true if the parameter pack Args contains an nda::ellipsis.
Definition range.hpp:69
constexpr bool has_contiguous(layout_prop_e lp)
Checks if a layout property has the contiguous property.
Definition traits.hpp:282
constexpr bool has_strided_1d(layout_prop_e lp)
Checks if a layout property has the strided_1d property.
Definition traits.hpp:266
__inline__ void for_each(std::array< Int, R > const &shape, F &&f)
Loop over all possible index values of a given shape and apply a function to them.
Definition for_each.hpp:129
constexpr bool has_layout_strided_1d
Constexpr variable that is true if type A has the strided_1d nda::layout_prop_e guarantee.
Definition traits.hpp:334
auto get_block_layout(A const &a)
Check if a given nda::MemoryArray has a block-strided layout.
constexpr layout_info_t get_layout_info
Constexpr variable that specifies the nda::layout_info_t of type A.
Definition traits.hpp:321
constexpr bool has_contiguous_layout
Constexpr variable that is true if type A has the contiguous nda::layout_prop_e guarantee.
Definition traits.hpp:330
static constexpr bool on_device
Constexpr variable that is true if all given types have a Device address space.
static constexpr AddressSpace get_addr_space
Variable template providing the address space for different types.
static constexpr bool on_host
Constexpr variable that is true if all given types have a Host address space.
void memcpy2D(void *dest, size_t dpitch, const void *src, size_t spitch, size_t width, size_t height)
Call CUDA's cudaMemcpy2D function or simulate its behavior on the Host based on the given address spa...
Definition memcpy.hpp:84
static constexpr do_not_initialize_t do_not_initialize
Instance of nda::mem::do_not_initialize_t.
Definition handle.hpp:69
static constexpr init_zero_t init_zero
Instance of nda::mem::init_zero_t.
Definition handle.hpp:75
constexpr uint64_t encode(std::array< int, N > const &a)
Encode a std::array<int, N> in a uint64_t.
constexpr std::array< T, N > apply(std::array< Int, N > const &p, std::array< T, N > const &a)
Apply a permutation to a std::array.
constexpr std::array< T, R+1 > front_append(std::array< T, R > const &a, U const &x)
Make a new std::array by prepending one element at the front to an existing std::array.
Definition array.hpp:232
constexpr std::array< T, R > make_std_array(std::array< U, R > const &a)
Convert a std::array with value type U to a std::array with value type T.
Definition array.hpp:181
constexpr bool is_complex_v
Constexpr variable that is true if type T is a std::complex type.
Definition traits.hpp:75
static constexpr bool always_false
Constexpr variable that is always false regardless of the types in Ts (used to trigger static_assert)...
Definition traits.hpp:71
constexpr bool is_scalar_for_v
Constexpr variable used to check requirements when initializing an nda::basic_array or nda::basic_arr...
Definition traits.hpp:93
constexpr bool is_scalar_v
Constexpr variable that is true if type S is a scalar type, i.e. arithmetic or complex.
Definition traits.hpp:79
constexpr bool is_scalar_or_convertible_v
Constexpr variable that is true if type S is a scalar type (see nda::is_scalar_v) or if a std::comple...
Definition traits.hpp:86
Provides an iterator for nda::basic_array and nda::basic_array_view types.
Provides functions to transform the memory layout of an nda::basic_array or nda::basic_array_view.
Macros used in the nda library.
Defines various memory handling policies.
Provides a generic memcpy and memcpy2D function for different address spaces.
Provides utilities to work with permutations and to compactly encode/decode std::array objects.
Includes the itertools header and provides some additional utilities.
A small wrapper around a single long integer to be used as a linear index.
Definition traits.hpp:343
Memory policy using an nda::mem::handle_borrowed.
Definition policies.hpp:108
Default accessor for various array and view types.
Definition accessors.hpp:36
uint64_t stride_order
Stride order of the array/view.
Definition traits.hpp:297
Tag used in constructors to indicate that the memory should be initialized to zero.
Definition handle.hpp:72
Provides type traits for the nda library.