TRIQS/nda 1.3.0
Multi-dimensional array library for C++
|
Interface to parts of the BLAS library.
Typedefs | |
using | nda::dcomplex = std::complex<double> |
Alias for std::complex<double> type. | |
Functions | |
template<typename X , typename Y > requires ((Scalar<X> or MemoryVector<X>) and (Scalar<Y> or MemoryVector<X>)) | |
auto | nda::blas::dot (X const &x, Y const &y) |
Interface to the BLAS dot routine. | |
template<typename X , typename Y > | |
auto | nda::blas::dot_generic (X const &x, Y const &y) |
Generic implementation of nda::blas::dot for types not supported by BLAS/LAPACK. | |
template<typename X , typename Y > requires ((Scalar<X> or MemoryVector<X>) and (Scalar<Y> or MemoryVector<X>)) | |
auto | nda::blas::dotc (X const &x, Y const &y) |
Interface to the BLAS dotc routine. | |
template<typename X , typename Y > | |
auto | nda::blas::dotc_generic (X const &x, Y const &y) |
Generic implementation of nda::blas::dotc for types not supported by BLAS/LAPACK. | |
template<Matrix A, Matrix B, MemoryMatrix C> requires ((MemoryMatrix<A> or is_conj_array_expr<A>) and (MemoryMatrix<B> or is_conj_array_expr<B>) and have_same_value_type_v<A, B, C> and is_blas_lapack_v<get_value_t<A>>) | |
void | nda::blas::gemm (get_value_t< A > alpha, A const &a, B const &b, get_value_t< A > beta, C &&c) |
Interface to the BLAS gemm routine. | |
template<bool VBATCH = false, Matrix A, Matrix B, MemoryMatrix C> requires ((MemoryMatrix<A> or is_conj_array_expr<A>) and (MemoryMatrix<B> or is_conj_array_expr<B>) and have_same_value_type_v<A, B, C> and is_blas_lapack_v<get_value_t<A>>) | |
void | nda::blas::gemm_batch (get_value_t< A > alpha, std::vector< A > const &va, std::vector< B > const &vb, get_value_t< A > beta, std::vector< C > &vc) |
Implements a batched version of nda::blas::gemm taking vectors of matrices as arguments. | |
template<ArrayOfRank< 3 > A, ArrayOfRank< 3 > B, MemoryArrayOfRank< 3 > C> requires ((MemoryArrayOfRank<A, 3> or (is_conj_array_expr<A>)) and (MemoryArrayOfRank<B, 3> or (is_conj_array_expr<B>)) and have_same_value_type_v<A, B, C> and is_blas_lapack_v<get_value_t<A>>) | |
void | nda::blas::gemm_batch_strided (get_value_t< A > alpha, A const &a, B const &b, get_value_t< A > beta, C &&c) |
Implements a strided batched version of nda::blas::gemm taking 3-dimensional arrays as arguments. | |
template<Matrix A, Matrix B, MemoryMatrix C> | |
void | nda::blas::gemm_generic (typename A::value_type alpha, A const &a, B const &b, typename A::value_type beta, C &&c) |
Generic nda::blas::gemm implementation for types not supported by BLAS/LAPACK. | |
template<Matrix A, Matrix B, MemoryMatrix C> | |
void | nda::blas::gemm_vbatch (get_value_t< A > alpha, std::vector< A > const &va, std::vector< B > const &vb, get_value_t< A > beta, std::vector< C > &vc) |
Wrapper of nda::blas::gemm_batch that allows variable sized matrices. | |
template<Matrix A, MemoryVector X, MemoryVector Y> requires ((MemoryMatrix<A> or is_conj_array_expr<A>) and have_same_value_type_v<A, X, Y> and is_blas_lapack_v<get_value_t<A>>) | |
void | nda::blas::gemv (get_value_t< A > alpha, A const &a, X const &x, get_value_t< A > beta, Y &&y) |
Interface to the BLAS gemv routine. | |
template<typename A , typename X , typename Y > | |
void | nda::blas::gemv_generic (get_value_t< A > alpha, A const &a, X const &x, get_value_t< A > beta, Y &&y) |
Generic nda::blas::gemv implementation for types not supported by BLAS/LAPACK. | |
template<MemoryVector X, MemoryVector Y, MemoryMatrix M> requires (have_same_value_type_v<X, Y, M> and mem::have_compatible_addr_space<X, Y, M> and is_blas_lapack_v<get_value_t<X>>) | |
void | nda::blas::ger (get_value_t< X > alpha, X const &x, Y const &y, M &&m) |
Interface to the BLAS ger routine. | |
template<MemoryMatrix A> | |
int | nda::blas::get_ld (A const &a) |
Get the leading dimension in LAPACK jargon of an nda::MemoryMatrix. | |
template<MemoryMatrix A> | |
int | nda::blas::get_ncols (A const &a) |
Get the number of columns in LAPACK jargon of an nda::MemoryMatrix. | |
template<ArrayOrScalar A, ArrayOrScalar B> | |
auto | nda::blas::outer_product (A const &a, B const &b) |
Calculate the outer product of two contiguous arrays/views/scalars. | |
template<typename X > requires (MemoryVector<X> or is_conj_array_expr<X>) | |
void | nda::blas::scal (get_value_t< X > alpha, X &&x) |
Interface to the BLAS scal routine. | |
Variables | |
template<bool conj, bool transpose> | |
const char | nda::blas::get_op |
Variable template that determines the BLAS matrix operation tag ('N','T','C') based on the given boolean flags for conjugation and transposition. | |
template<Array A> | |
static constexpr bool | nda::blas::has_C_layout |
Constexpr variable that is true if the given nda::Array type has a C memory layout. | |
template<Array A> | |
static constexpr bool | nda::blas::has_F_layout |
Constexpr variable that is true if the given nda::Array type has a Fortran memory layout. | |
template<typename A > | |
static constexpr bool | nda::blas::is_conj_array_expr = false |
Constexpr variable that is true if the given type is a conjugate lazy expression. | |
template<MemoryArray A> | |
static constexpr bool | nda::blas::is_conj_array_expr< expr_call< conj_f, A > > = true |
Specialization of nda::blas::is_conj_array_expr for the conjugate lazy expressions. | |
auto nda::blas::dot | ( | X const & | x, |
Y const & | y ) |
#include <nda/blas/dot.hpp>
Interface to the BLAS dot
routine.
This function forms the dot product of two vectors. It calculates
X | nda::MemoryVector or nda::Scalar type. |
Y | nda::MemoryVector or nda::Scalar type. |
x | Input vector/scalar. |
y | Input vector/scalar. |
auto nda::blas::dot_generic | ( | X const & | x, |
Y const & | y ) |
#include <nda/blas/dot.hpp>
Generic implementation of nda::blas::dot for types not supported by BLAS/LAPACK.
X | Vector/Scalar type. |
Y | Vector/Scalar type. |
x | Input vector/scalar. |
y | Input vector/scalar. |
auto nda::blas::dotc | ( | X const & | x, |
Y const & | y ) |
#include <nda/blas/dot.hpp>
Interface to the BLAS dotc
routine.
This function forms the dot product of two vectors. It calculates
X | nda::MemoryVector or nda::Scalar type. |
Y | nda::MemoryVector or nda::Scalar type. |
x | Input vector/scalar. |
y | Input vector/scalar. |
auto nda::blas::dotc_generic | ( | X const & | x, |
Y const & | y ) |
#include <nda/blas/dot.hpp>
Generic implementation of nda::blas::dotc for types not supported by BLAS/LAPACK.
X | Vector/Scalar type. |
Y | Vector/Scalar type. |
x | Input vector/scalar. |
y | Input vector/scalar. |
void nda::blas::gemm | ( | get_value_t< A > | alpha, |
A const & | a, | ||
B const & | b, | ||
get_value_t< A > | beta, | ||
C && | c ) |
#include <nda/blas/gemm.hpp>
Interface to the BLAS gemm
routine.
This function performs one of the matrix-matrix operations
\[ \mathbf{C} \leftarrow \alpha \mathrm{op}(\mathbf{A}) \mathrm{op}(\mathbf{B}) + \beta \mathbf{C} \;, \]
where \( \mathrm{op}(\mathbf{X}) \) is one of
Here, \( \alpha \) and \( \beta \) are scalars, and \( \mathbf{A} \), \( \mathbf{B} \) are matrices with \( \mathrm{op}(\mathbf{A}) \) is an m-by-k matrix, \( \mathrm{op}(\mathbf{B}) \) is a k-by-n matrix and \( \mathrm{op}(\mathbf{C}) \) is an m-by-n matrix.
A | nda::Matrix type. |
B | nda::Matrix type. |
C | nda::MemoryMatrix type. |
alpha | Input scalar. |
a | Input matrix of size m-by-k. |
b | Input matrix of size k-by-n. |
beta | Input scalar. |
c | Input/Output matrix of size m-by-n. |
void nda::blas::gemm_batch | ( | get_value_t< A > | alpha, |
std::vector< A > const & | va, | ||
std::vector< B > const & | vb, | ||
get_value_t< A > | beta, | ||
std::vector< C > & | vc ) |
#include <nda/blas/gemm_batch.hpp>
Implements a batched version of nda::blas::gemm taking vectors of matrices as arguments.
This routine is a batched version of nda::blas::gemm, performing multiple gemm
operations in a single call. Each gemm
operation performs a matrix-matrix product with general matrices.
VBATCH | Allow for variable sized matrices. |
A | nda::Matrix type. |
B | nda::Matrix type. |
C | nda::MemoryMatrix type. |
alpha | Input scalar. |
va | std::vector of input matrices. |
vb | std::vector of input matrices. |
beta | Input scalar. |
vc | std::vector of input/output matrices. |
Definition at line 69 of file gemm_batch.hpp.
void nda::blas::gemm_batch_strided | ( | get_value_t< A > | alpha, |
A const & | a, | ||
B const & | b, | ||
get_value_t< A > | beta, | ||
C && | c ) |
#include <nda/blas/gemm_batch.hpp>
Implements a strided batched version of nda::blas::gemm taking 3-dimensional arrays as arguments.
This function is similar to nda::blas::gemm_batch except that it takes 3-dimensional arrays as arguments instead of vectors of matrices. The first dimension of the arrays indexes the matrices to be multiplied.
A | nda::ArrayOfRank<3> type. |
B | nda::ArrayOfRank<3> type. |
C | nda::ArrayOfRank<3> type. |
alpha | Input scalar. |
a | 3-dimensional input array. |
b | 3-dimensional input array. |
beta | Input scalar. |
c | 3-dimensional input/output array. |
Definition at line 221 of file gemm_batch.hpp.
void nda::blas::gemm_generic | ( | typename A::value_type | alpha, |
A const & | a, | ||
B const & | b, | ||
typename A::value_type | beta, | ||
C && | c ) |
#include <nda/blas/gemm.hpp>
Generic nda::blas::gemm implementation for types not supported by BLAS/LAPACK.
A | Some matrix type. |
B | Some matrix type. |
C | Some matrix type. |
alpha | Input scalar. |
a | Input matrix of size m-by-k. |
b | Input matrix of size k-by-n. |
beta | Input scalar. |
c | Input/Output matrix of size m-by-n. |
void nda::blas::gemm_vbatch | ( | get_value_t< A > | alpha, |
std::vector< A > const & | va, | ||
std::vector< B > const & | vb, | ||
get_value_t< A > | beta, | ||
std::vector< C > & | vc ) |
#include <nda/blas/gemm_batch.hpp>
Wrapper of nda::blas::gemm_batch that allows variable sized matrices.
A | nda::Matrix type. |
B | nda::Matrix type. |
C | nda::MemoryMatrix type. |
alpha | Input scalar. |
va | std::vector of input matrices. |
vb | std::vector of input matrices. |
beta | Input scalar. |
vc | std::vector of input/output matrices. |
Definition at line 199 of file gemm_batch.hpp.
void nda::blas::gemv | ( | get_value_t< A > | alpha, |
A const & | a, | ||
X const & | x, | ||
get_value_t< A > | beta, | ||
Y && | y ) |
#include <nda/blas/gemv.hpp>
Interface to the BLAS gemv
routine.
This function performs one of the matrix-vector operations
where \( \alpha \) and \( \beta \) are scalars, \( \mathbf{x} \) and \( \mathbf{y} \) are vectors and \( \mathbf{A} \) is an m-by-n matrix.
A | nda::Matrix type. |
X | nda::MemoryVector type. |
Y | nda::MemoryVector type. |
alpha | Input scalar. |
a | Input matrix of size m-by-n. |
x | Input vector of size n. |
beta | Input scalar. |
y | Input/Output vector of size m. |
void nda::blas::gemv_generic | ( | get_value_t< A > | alpha, |
A const & | a, | ||
X const & | x, | ||
get_value_t< A > | beta, | ||
Y && | y ) |
#include <nda/blas/gemv.hpp>
Generic nda::blas::gemv implementation for types not supported by BLAS/LAPACK.
A | Some matrix type. |
X | Some vector type. |
Y | Some vector type. |
alpha | Input scalar. |
a | Input matrix of size m-by-n. |
x | Input vector of size n. |
beta | Input scalar. |
y | Input/Output vector of size m. |
void nda::blas::ger | ( | get_value_t< X > | alpha, |
X const & | x, | ||
Y const & | y, | ||
M && | m ) |
#include <nda/blas/ger.hpp>
Interface to the BLAS ger
routine.
This function performs the rank 1 operation
\[ \mathbf{M} \leftarrow \alpha \mathbf{x} \mathbf{y}^H + \mathbf{M} ;, \]
where \( \alpha \) is a scalar, \( \mathbf{x} \) is an m element vector, \( \mathbf{y} \) is an n element vector and \( \mathbf{M} \) is an m-by-n matrix.
X | nda::MemoryVector type. |
Y | nda::MemoryVector type. |
M | nda::MemoryMatrix type. |
alpha | Input scalar. |
x | Input left vector (column vector) of size m. |
y | Input right vector (row vector) of size n. |
m | Input/Output matrix of size m-by-n to which the outer product is added. |
int nda::blas::get_ld | ( | A const & | a | ) |
#include <nda/blas/tools.hpp>
Get the leading dimension in LAPACK jargon of an nda::MemoryMatrix.
A | nda::MemoryMatrix type. |
a | nda::MemoryMatrix object. |
int nda::blas::get_ncols | ( | A const & | a | ) |
#include <nda/blas/tools.hpp>
Get the number of columns in LAPACK jargon of an nda::MemoryMatrix.
A | nda::MemoryMatrix type. |
a | nda::MemoryMatrix object. |
auto nda::blas::outer_product | ( | A const & | a, |
B const & | b ) |
#include <nda/blas/ger.hpp>
Calculate the outer product of two contiguous arrays/views/scalars.
For general multidimensional arrays/views, it calculates their tensor outer product, i.e.
If one of the arguments is a scalar, it multiplies each element of the other argument by the scalar which returns a lazy nda::expr object.
If both arguments are scalars, it returns their products.
A | nda::ArrayOrScalar type. |
B | nda::ArrayOrScalar type. |
a | Input array/scalar. |
b | Input array/scalar. |
void nda::blas::scal | ( | get_value_t< X > | alpha, |
X && | x ) |
#include <nda/blas/scal.hpp>
Interface to the BLAS scal
routine.
Scales a vector by a constant. This function calculates
\[ \mathbf{x} \leftarrow \alpha \mathbf{x} ;, \]
where \( \alpha \) is a scalar constant and \( \mathbf{x} \) is a vector.
X | nda::MemoryVector or a conjugate array expression. |
alpha | Input scalar. |
x | Input/Output vector to be scaled. |
const char nda::blas::get_op |
#include <nda/blas/tools.hpp>
Variable template that determines the BLAS matrix operation tag ('N','T','C') based on the given boolean flags for conjugation and transposition.
conj | Boolean flag for conjugation. |
transpose | Boolean flag for transposition. |