Documentation

Background

User guide

Tutorials

Python reference manual

class triqs_soehyb.triqs_solver.TriqsSolver(beta, gf_struct, eps, w_max, verbose=True)[source]

TRIQS Sum-Of-Exponentials bold HYBridization expansion impurity solver (triqs_soehyb)

Parameters:
betadouble

inverse temperature

gf_structlist of pairs [ (str,int), …]

Structure of the Green’s functions. It must be a list of pairs, each containing the name of the Green’s function block as a string and the size of that block. For example: [ ('up', 3), ('down', 3) ].

epsdouble

Accuracy of the Discrete Lehmann Representation (DLR) imaginary time basis

w_maxdouble

Energy cut-off of the of the Discrete Lehmann Representation (DLR) imaginary time basis

verbosebool, optional

Verbose printouts (default: True)

solve(h_int, order, compress_hybridization=True, **kwargs)[source]

Self-consistent solution of the pseudo-particle Green’s function and pseudo-particle self-energy.

Parameters:
h_intTriqs Operator

Local many-body Hamiltonian of the impurity problem

orderint

Expansion order of the bold hybridization expansion

compress_hybridizationbool, optional

Use AAA compression of the hybridization function (default: True) (If False the DLR basis is used to represent the hybridization function.)

tolfloat, optional

Pseudo-particle self-consistency convergence tolerance (default: 1e-9)

maxiterint, optional

Maximal number of self-consistent iterations (default: 10)

update_eta_exactbool, optional

Pseudo-particle energy shift update strategy (default: True)

mixfloat, optional

Linear mixing ratio in the range [0, 1] (default: 1.0)

verbosebool, optional

Verbose printouts (default: True)

G0_iaandarray/None, optional

Initial guess for the pseudo-particle propagator (default: None)