Documentation
Background
User guide
Tutorials
Python reference manual
- class triqs_soehyb.triqs_solver.TriqsSolver(beta, gf_struct, eps, w_max, verbose=True)[source]
TRIQS Sum-Of-Exponentials bold HYBridization expansion impurity solver (triqs_soehyb)
- Parameters:
- betadouble
inverse temperature
- gf_structlist of pairs [ (str,int), …]
Structure of the Green’s functions. It must be a list of pairs, each containing the name of the Green’s function block as a string and the size of that block. For example:
[ ('up', 3), ('down', 3) ]
.- epsdouble
Accuracy of the Discrete Lehmann Representation (DLR) imaginary time basis
- w_maxdouble
Energy cut-off of the of the Discrete Lehmann Representation (DLR) imaginary time basis
- verbosebool, optional
Verbose printouts (default: True)
- solve(h_int, order, compress_hybridization=True, **kwargs)[source]
Self-consistent solution of the pseudo-particle Green’s function and pseudo-particle self-energy.
- Parameters:
- h_intTriqs Operator
Local many-body Hamiltonian of the impurity problem
- orderint
Expansion order of the bold hybridization expansion
- compress_hybridizationbool, optional
Use AAA compression of the hybridization function (default: True) (If False the DLR basis is used to represent the hybridization function.)
- tolfloat, optional
Pseudo-particle self-consistency convergence tolerance (default: 1e-9)
- maxiterint, optional
Maximal number of self-consistent iterations (default: 10)
- update_eta_exactbool, optional
Pseudo-particle energy shift update strategy (default: True)
- mixfloat, optional
Linear mixing ratio in the range [0, 1] (default: 1.0)
- verbosebool, optional
Verbose printouts (default: True)
- G0_iaandarray/None, optional
Initial guess for the pseudo-particle propagator (default: None)