Source code for triqs_tprf.hf_solver

# -*- coding: utf-8 -*-

################################################################################
#
# TPRF: Two-Particle Response Function (TPRF) Toolbox for TRIQS
#
# Copyright (C) 2018 by The Simons Foundation
# Author: H. U.R. Strand
#
# TPRF is free software: you can redistribute it and/or modify it under the
# terms of the GNU General Public License as published by the Free Software
# Foundation, either version 3 of the License, or (at your option) any later
# version.
#
# TPRF is distributed in the hope that it will be useful, but WITHOUT ANY
# WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
# FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
# details.
#
# You should have received a copy of the GNU General Public License along with
# TPRF. If not, see <http://www.gnu.org/licenses/>.
#
################################################################################

""" TRIQS: Hartree-Fock Solver

for systems with general dispersion and local interaction

Author: Hugo U. R. Strand, hugo.strand@gmail.com (2018)
"""

# ----------------------------------------------------------------------

import itertools
import numpy as np
from numpy_compat import np_eigvalsh, np_eigh

# ----------------------------------------------------------------------

from scipy.optimize import fsolve
from scipy.optimize import brentq

# ----------------------------------------------------------------------

import pytriqs.utility.mpi as mpi

# ----------------------------------------------------------------------

from triqs_tprf.rpa_tensor import get_rpa_tensor
from triqs_tprf.rpa_tensor import fundamental_operators_from_gf_struct
from triqs_tprf.OperatorUtils import is_operator_composed_of_only_fundamental_operators

# ----------------------------------------------------------------------
[docs]class HartreeFockSolver(object): """ Hartree-Fock solver for local interactions. Parameters ---------- e_k : TRIQS Greens function on a Brillouin zone mesh Single-particle dispersion. beta : float inverse temperature H_int : TRIQS Operator instance Local interaction Hamiltonian gf_struct : list of lists of block index and list of internal orbital indices gf_struct fixing orbital order between e_k and H_int mu0 : float chemical potential mu_min, mu_max : float, optional range for chemical potential search. """ # ------------------------------------------------------------------ def __init__(self, e_k, beta, H_int=None, gf_struct=None, mu0=0., mu_max=10, mu_min=-10.): if mpi.is_master_node(): print self.logo() self.mu = mu0 self.beta = beta self.mu_max = mu_max self.mu_min = mu_min self.e_k = e_k.copy() self.e_k_MF = e_k.copy() self.n_k = len(self.e_k.mesh) self.target_shape = self.e_k.target_shape self.shape_ab = self.e_k.target_shape self.shape_abcd = list(self.shape_ab) * 2 self.norb = self.target_shape[0] self.triu_idxs = np.triu_indices(self.norb, k=1) if mpi.is_master_node(): print 'beta =', self.beta print 'mu =', self.mu print 'bands =', self.norb print 'n_k =', len(self.e_k.mesh) print 'H_int =', H_int print if gf_struct is None: assert( H_int is None ), \ 'Error: gf_struct = None, but H_int is not None' if H_int is not None: assert( gf_struct is not None ), \ 'Error: H_int = None, but gf_struct is not None' fundamental_operators = fundamental_operators_from_gf_struct(gf_struct) if mpi.is_master_node(): print 'gf_struct =', gf_struct print 'fundamental_operators =', fundamental_operators print assert( is_operator_composed_of_only_fundamental_operators( H_int, fundamental_operators) ), \ 'Error: H_int is incompatible with gf_struct and its fundamental_operators' self.U_abcd = get_rpa_tensor(H_int, fundamental_operators) else: self.U_abcd = np.zeros(self.shape_abcd) # ------------------------------------------------------------------ def update_mean_field(self, rho_ab): self.M = np.einsum('abcd,cd->ba', -self.U_abcd, rho_ab) return self.M # ------------------------------------------------------------------ def update_mean_field_dispersion(self): self.e_k_MF.data[:] = self.e_k.data + self.M[None, ...] # ------------------------------------------------------------------ def update_chemical_potential(self, N_target, mu0=None): if mu0 is None: mu0 = self.mu e = np_eigvalsh(self.e_k_MF.data) fermi = lambda e : 1./(np.exp(self.beta * e) + 1) def target_function(mu): n = np.sum(fermi(e - mu)) / self.n_k return n - N_target mu = brentq(target_function, self.mu_min, self.mu_max) self.mu = mu # ------------------------------------------------------------------ def update_momentum_density_matrix(self): e, V = np_eigh(self.e_k_MF.data) e -= self.mu fermi = lambda e : 1./(np.exp(self.beta * e) + 1) self.rho_kab = np.einsum('kab,kb,kcb->kac', V, fermi(e), np.conj(V)) return self.rho_kab # ------------------------------------------------------------------ def update_density_matrix(self): rho_kab = self.update_momentum_density_matrix() self.rho_ab = np.sum(rho_kab, axis=0) / self.n_k self.N_tot = np.sum(np.diag(self.rho_ab)) return self.rho_ab # ------------------------------------------------------------------ def update_non_int_free_energy(self): e = np_eigvalsh(self.e_k_MF.data) e -= self.mu self.Omega0 = -1./self.beta * np.sum( np.log(1. + np.exp(-self.beta*e)) ) self.Omega0 /= len(self.e_k_MF.mesh) return self.Omega0 # ------------------------------------------------------------------ def update_kinetic_energy(self): rho_kab = self.update_momentum_density_matrix() self.E_kin = np.einsum('kab,kba->', self.e_k.data, rho_kab) self.E_kin /= len(self.e_k.mesh) return self.E_kin # ------------------------------------------------------------------ def update_interaction_energy(self): #self.E_int = 0.5 * np.einsum('aa,ab,bb->', self.rho, self.U_ab, self.rho) self.E_int = 0.5 * np.einsum( 'ab,abcd,cd->', self.rho_ab, self.U_abcd, self.rho_ab) return self.E_int # ------------------------------------------------------------------ def update_total_energy(self): E_kin = self.update_kinetic_energy() E_int = self.update_interaction_energy() self.E_tot = E_kin + E_int Omega0 = self.update_non_int_free_energy() self.Omega = Omega0 + E_int return self.E_tot # ------------------------------------------------------------------ def density_matrix_step(self, rho_vec, N_target=None): rho_ab = self.vec2mat(rho_vec) self.update_mean_field(rho_ab) self.update_mean_field_dispersion() if N_target is not None: self.update_chemical_potential(N_target, mu0=self.mu) rho_ab = self.update_density_matrix() rho_vec = self.mat2vec(rho_ab) return rho_vec # ------------------------------------------------------------------ def solve_setup(self, N_target, M0=None, mu0=None): self.N_target = N_target if mu0 is None: self.update_chemical_potential(self.N_target, mu0=0.) else: self.mu = mu0 if M0 is None: M0 = np.zeros(self.target_shape) M0 = np.array(M0, dtype=np.complex) self.M = np.copy(M0) self.update_mean_field_dispersion() self.update_chemical_potential(self.N_target) rho0_ab = self.update_density_matrix() rho0_vec = self.mat2vec(rho0_ab) return rho0_vec # ------------------------------------------------------------------
[docs] def solve_iter(self, N_target, M0=None, mu0=None, nitermax=100, mixing=0.5, tol=1e-9): """ Solve the HF-equations using forward recursion at fixed density. Parameters ---------- N_target : float Total density. M0 : ndarray (2D), optional Initial mean-field (0 if None). mu0 : float, optional Initial chemical potential. nitermax : int, optional Maximal number of self consistent iterations. mixing : float, optional Linear mixing parameter. tol : float, optional Convergence in relative change of the density matrix. Returns ------- rho : ndarray (2D) Local density matrix. """ print 'MF: Forward iteration' print 'nitermax =', nitermax print 'mixing =', mixing print 'tol =', tol print assert( mixing >= 0. ) assert( mixing <= 1. ) self.mixing = mixing self.nitermax = nitermax rho_vec = self.solve_setup(N_target, M0, mu0) rho_iter = [] for idx in xrange(self.nitermax): rho_iter.append(rho_vec) rho_vec_old = np.copy(rho_vec) rho_vec_new = self.density_matrix_step(rho_vec, N_target) norm = np.linalg.norm(rho_vec_old) drho = np.linalg.norm(rho_vec_old - rho_vec_new) / norm print 'MF: iter, drho = %3i, %2.2E' % (idx, drho) if drho < tol: print 'MF: Converged drho = %3.3E\n' % drho break rho_vec = (1. - mixing) * rho_vec_old + mixing * rho_vec_new self.update_total_energy() print self.__str__() rho_iter = np.array(rho_iter) return rho_iter
# ------------------------------------------------------------------
[docs] def solve_newton(self, N_target, M0=None, mu0=None): """ Solve the HF-equations using a quasi Newton method at fixed density. Parameters ---------- N_tot : float Total density. M0 : ndarray (2D), optional Initial mean-field (0 if None). mu0 : float, optional Initial chemical potential. """ print 'MF: Newton solver' print rho0_vec = self.solve_setup(N_target, M0, mu0) def target_function(rho_vec): rho_vec_new = self.density_matrix_step(rho_vec, N_target) return rho_vec_new - rho_vec rho_vec = fsolve(target_function, rho0_vec) self.update_total_energy() print self.__str__() self.density_matrix_step(rho_vec)
# ------------------------------------------------------------------
[docs] def solve_newton_mu(self, mu, M0=None): """ Solve the HF-equations using a quasi Newton method at fixed chemical potential. Parameters ---------- mu0 : float Initial chemical potential. M0 : ndarray (2D), optional Initial mean-field (0 if None). """ print 'MF: Newton solver' print self.mu = mu if M0 is None: M0 = np.zeros(self.target_shape) M0 = np.array(M0, dtype=np.complex) self.M = np.copy(M0) self.update_mean_field_dispersion() rho0_ab = self.update_density_matrix() rho0_vec = self.mat2vec(rho0_ab) def target_function(rho_vec): rho_vec_new = self.density_matrix_step(rho_vec) return rho_vec_new - rho_vec rho_vec = fsolve(target_function, rho0_vec) self.update_total_energy() print self.__str__() self.density_matrix_step(rho_vec)
# ------------------------------------------------------------------ def total_density(self): return self.N_tot # ------------------------------------------------------------------ def density_matrix(self): return self.rho_ab # ------------------------------------------------------------------ def mean_field_matrix(self): return self.M # ------------------------------------------------------------------ def chemical_potential(self): return self.mu # ------------------------------------------------------------------ def expectation_value(self, op_ab): return np.einsum('ab,ba->', op_ab, self.rho_ab) # ------------------------------------------------------------------ def __str__(self): txt = 'MF: Solver state\n' + \ 'beta = ' + str(self.beta) + '\n' + \ 'N_tot = ' + str(self.N_tot) + '\n' + \ 'E_tot = ' + str(self.E_tot) + '\n' + \ 'E_int = ' + str(self.E_int) + '\n' + \ 'E_kin = ' + str(self.E_kin) + '\n' + \ 'Omega0 = ' + str(self.Omega0) + '\n' + \ 'Omega = ' + str(self.Omega) + '\n' + \ 'rho_ab =\n' + str(self.rho_ab) + '\n' + \ 'mu = ' + str(self.mu) + '\n' + \ 'M =\n' + str(self.M) + '\n' + \ 'M - mu =\n' + str(self.M - self.mu * np.eye(self.norb)) + '\n' return txt # ------------------------------------------------------------------
[docs] def mat2vec(self, mat): r""" Converts a unitary matrix to a vector representation with the order 1. the real diagonal entries 2. the real part of the upper triangular entries 3. the imaginary part of the upper triangular entries """ assert( len(mat.shape) == 2 ) diag = np.diag(mat).real up_tri = mat[self.triu_idxs] vec = np.concatenate((diag, up_tri.real, up_tri.imag)) return vec
# ------------------------------------------------------------------
[docs] def vec2mat(self, vec): """ Converts from vector representation to a unitary matrix see mat2vec(...) for details. """ assert( len(vec.shape) == 1 ) mat = np.zeros(self.shape_ab, dtype=np.complex) diag, up_tri = vec[:self.norb], vec[self.norb:] re, im = np.split(up_tri, 2) mat[self.triu_idxs] = re + 1.j * im mat += np.conj(mat).T # reconstruct lower triangle mat += np.diag(diag) # add diagonal return mat
# ------------------------------------------------------------------ def logo(self): logo = """ ╔╦╗╦═╗╦╔═╗ ╔═╗ ┬ ┬┌─┐ ║ ╠╦╝║║═╬╗╚═╗ ├─┤├┤ ╩ ╩╚═╩╚═╝╚╚═╝ ┴ ┴└ TRIQS: Hartree-Fock solver """ return logo
# ----------------------------------------------------------------------
[docs]class HartreeSolver(HartreeFockSolver): """ Hartree solver for local interactions. Parameters ---------- e_k : TRIQS Greens function on a Brillouin zone mesh Single-particle dispersion. beta : float inverse temperature H_int : TRIQS Operator instance Local interaction Hamiltonian gf_struct : list of lists of block index and list of internal orbital indices gf_struct fixing orbital order between e_k and H_int mu0 : float chemical potential mu_min, mu_max : float, optional range for chemical potential search. """ # ------------------------------------------------------------------ def mat2vec(self, mat): assert( len(mat.shape) == 2 ) return np.diag(mat).real # ------------------------------------------------------------------ def vec2mat(self, vec): assert( len(vec.shape) == 1 ) return np.diag(vec.real)
# ----------------------------------------------------------------------