.. Generated automatically by cpp2rst .. highlight:: c .. _eliashberg_product_fft: eliashberg_product_fft ====================== **Synopsis**: .. code-block:: c triqs_tprf::gk_iw_t eliashberg_product_fft (triqs_tprf::chi_tr_vt Gamma_pp_dyn_tr, triqs_tprf::chi_r_vt Gamma_pp_const_r, triqs_tprf::gk_iw_vt g_wk, triqs_tprf::gk_iw_vt delta_wk) Linearized Eliashberg product via FFT Parameters ---------- * **chi_rt**: dynamic part of the particle-particle vertex :math:`\Gamma^{(pp)}_{a\bar{b}c\bar{d}}(\mathbf{r}, \tau)` * **chi_r**: constant part of the particle-particle vertex :math:`\Gamma^{(pp)}_{a\bar{b}c\bar{d}}(\mathbf{r})` * **g_kw**: single particle Green's function :math:`G_{a\bar{b}}(\mathbf{k}, i\nu_n)` * **delta_kw**: pairing self-energy :math:`\Delta_{\bar{a}\bar{b}}(\mathbf{k}, i\nu_n)` Return value ------------ Gives the result of the product :math:`\Delta^{(out)} \sim \Gamma^{(pp)}GG \Delta` Documentation ------------- Computes the product .. math:: \Delta^{(out)}_{\bar{a}\bar{b}}(\mathbf{k},i\nu) = -\frac{1}{N_k \beta}\sum_{\mathbf{k}'} \sum_{i\nu'} \Gamma_{A\bar{a}B\bar{b}}(\mathbf{k}-\mathbf{k}', i\nu - i\nu') \\ \times G_{A\bar{c}}(\mathbf{k}', i\nu') \Delta_{\bar{c}\bar{d}}(\mathbf{k}', i\nu') G_{B\bar{d}}(-\mathbf{k}', -i\nu')\,, by taking advantage of the convolution theorem. We therefore first calculate .. math:: \Delta^{(out)}_{\bar{a}\bar{b}}(\mathbf{r}, \tau) = -\Gamma_{A\bar{a}B\bar{b}}(\mathbf{r}, \tau) F_{AB}(\mathbf{r}, \tau) \,, where .. math:: F_{AB}(\mathbf{r}, \tau) = \mathcal{F}\big(G_{A\bar{c}}(\mathbf{k}', i\nu') \Delta_{\bar{c}\bar{d}}(\mathbf{k}', i\nu') G_{B\bar{d}}(-\mathbf{k}', -i\nu')\big)\,. Then we Fourier transform .. math:: \Delta^{(out)}_{\bar{a}\bar{b}}(\mathbf{k},i\nu) = \mathcal{F}\big(\Delta^{(out)}_{\bar{a}\bar{b}}(\mathbf{r}, \tau)\big)\,, to get the same result, but with far less computational effort.