.. Generated automatically by cpp2rst .. highlight:: c .. _lattice_dyson_g_w: lattice_dyson_g_w ================= **Synopsis**: .. code-block:: c triqs_tprf::g_w_t lattice_dyson_g_w (double mu, triqs_tprf::e_k_cvt e_k, triqs_tprf::g_w_cvt sigma_w) Construct an interacting Matsubara frequency local (:math:`\mathbf{r}=\mathbf{0}`) lattice Green's function :math:`G_{a\bar{b}}(i\omega_n)` Parameters ---------- * **mu**: chemical potential :math:`\mu` * **e_k**: discretized lattice dispersion :math:`\epsilon_{\bar{a}b}(\mathbf{k})` * **sigma_w**: imaginary frequency self-energy :math:`\Sigma_{\bar{a}b}(i\omega_n)` Return value ------------ Matsubara frequency lattice Green's function $G_{a\bar{b}}(i\omega_n, \mathbf{k})$ Documentation ------------- Computes .. math:: G_{a\bar{b}}(i\omega_n) = \frac{1}{N_k} \sum_\mathbf{k} \left[ (i\omega_n + \mu ) \cdot \mathbf{1} - \epsilon(\mathbf{k}) - \Sigma(i\omega_n) \right]^{-1}_{a\bar{b}}, using a discretized dispersion :math:`\epsilon_{\bar{a}b}(\mathbf{k})`, chemical potential :math:`\mu`, and a momentum independent Matsubara frequency self energy :math:`\Sigma_{\bar{a}b}(i\omega_n)`.