lattice_dyson_g_wk¶
Synopsis:
triqs_tprf::g_wk_t lattice_dyson_g_wk (double mu, triqs_tprf::e_k_cvt e_k,
triqs_tprf::g_w_cvt sigma_w) (1)
triqs_tprf::g_wk_t lattice_dyson_g_wk (double mu, triqs_tprf::e_k_cvt e_k,
triqs_tprf::g_wk_cvt sigma_wk) (2)
(1)Construct an interacting Matsubara frequency lattice Green’s function \(G_{a\bar{b}}(i\omega_n, \mathbf{k})\)
Parameters¶
- mu: chemical potential \(\mu\)
- e_k: discretized lattice dispersion \(\epsilon_{\bar{a}b}(\mathbf{k})\)
- sigma_w: imaginary frequency self-energy \(\Sigma_{\bar{a}b}(i\omega_n)\)
Return value¶
Matsubara frequency lattice Green’s function $G_{abar{b}}(iomega_n, mathbf{k})$
Documentation¶
Computes
(1)¶\[G_{a\bar{b}}(i\omega_n, \mathbf{k}) = \left[ (i\omega_n + \mu ) \cdot \mathbf{1} - \epsilon(\mathbf{k}) - \Sigma(i\omega_n) \right]^{-1}_{a\bar{b}},\]using a discretized dispersion \(\epsilon_{\bar{a}b}(\mathbf{k})\), chemical potential \(\mu\), and a momentum independent Matsubara frequency self energy \(\Sigma_{\bar{a}b}(i\omega_n)\).
(2)Construct an interacting Matsubara frequency lattice Green’s function \(G_{a\bar{b}}(i\omega_n, \mathbf{k})\)
Parameters¶
- mu: chemical potential \(\mu\)
- e_k: discretized lattice dispersion \(\epsilon_{\bar{a}b}(\mathbf{k})\)
- sigma_wk: imaginary frequency self-energy \(\Sigma_{\bar{a}b}(i\omega_n, \mathbf{k})\)
Return value¶
Matsubara frequency lattice Green’s function $G_{abar{b}}(iomega_n, mathbf{k})$
Documentation¶
Computes
(2)¶\[G_{a\bar{b}}(i\omega_n, \mathbf{k}) = \left[ (i\omega_n + \mu ) \cdot \mathbf{1} - \epsilon(\mathbf{k}) - \Sigma(i\omega_n, \mathbf{k}) \right]^{-1}_{a\bar{b}},\]using a discretized dispersion \(\epsilon_{\bar{a}b}(\mathbf{k})\), chemical potential \(\mu\), and a momentum independent Matsubara frequency self energy \(\Sigma_{\bar{a}b}(i\omega_n, \mathbf{k})\).