.. Generated automatically by cpp2rst .. highlight:: c .. role:: red .. role:: green .. role:: param .. _triqs_tprf__eliashberg_product_fft: triqs_tprf::eliashberg_product_fft ================================== *#include * **Synopsis** .. rst-class:: cppsynopsis | gk_iw_t :red:`eliashberg_product_fft` (chi_tr_vt :param:`Gamma_pp_dyn_tr`, | chi_r_vt :param:`Gamma_pp_const_r`, | gk_iw_vt :param:`g_wk`, | gk_iw_vt :param:`delta_wk`) Linearized Eliashberg product via FFT Computes the product .. math:: \Delta^{(out)}_{\bar{a}\bar{b}}(\mathbf{k},i\nu) = -\frac{1}{N_k \beta}\sum_{\mathbf{k}'} \sum_{i\nu'} \Gamma_{A\bar{a}B\bar{b}}(\mathbf{k}-\mathbf{k}', i\nu - i\nu') \\ \times G_{A\bar{c}}(\mathbf{k}', i\nu') \Delta_{\bar{c}\bar{d}}(\mathbf{k}', i\nu') G_{B\bar{d}}(-\mathbf{k}', -i\nu')\,, by taking advantage of the convolution theorem. We therefore first calculate .. math:: \Delta^{(out)}_{\bar{a}\bar{b}}(\mathbf{r}, \tau) = -\Gamma_{A\bar{a}B\bar{b}}(\mathbf{r}, \tau) F_{AB}(\mathbf{r}, \tau) \,, where .. math:: F_{AB}(\mathbf{r}, \tau) = \mathcal{F}\big(G_{A\bar{c}}(\mathbf{k}', i\nu') \Delta_{\bar{c}\bar{d}}(\mathbf{k}', i\nu') G_{B\bar{d}}(-\mathbf{k}', -i\nu')\big)\,. Then we Fourier transform .. math:: \Delta^{(out)}_{\bar{a}\bar{b}}(\mathbf{k},i\nu) = \mathcal{F}\big(\Delta^{(out)}_{\bar{a}\bar{b}}(\mathbf{r}, \tau)\big)\,, to get the same result, but with far less computational effort. Parameters ^^^^^^^^^^ * :param:`chi_rt` dynamic part of the particle-particle vertex :math:`\Gamma^{(pp)}_{a\bar{b}c\bar{d}}(\mathbf{r}, \tau)` * :param:`chi_r` constant part of the particle-particle vertex :math:`\Gamma^{(pp)}_{a\bar{b}c\bar{d}}(\mathbf{r})` * :param:`g_kw` single particle Green's function :math:`G_{a\bar{b}}(\mathbf{k}, i\nu_n)` * :param:`delta_kw` pairing self-energy :math:`\Delta_{\bar{a}\bar{b}}(\mathbf{k}, i\nu_n)` Returns ^^^^^^^ Gives the result of the product :math:`\Delta^{(out)} \sim \Gamma^{(pp)}GG \Delta`