triqs_tprf::eliashberg_product¶
#include <triqs_tprf.hpp>
Synopsis
gk_iw_t eliashberg_product (chi_wk_vt Gamma_pp,gk_iw_vt g_wk,gk_iw_vt delta_wk)
Linearized Eliashberg product
Computes the product
(1)¶\[\Delta^{(out)}_{\bar{a}\bar{b}}(\mathbf{k},i\nu) = -\frac{1}{N_k \beta}\sum_{\mathbf{k}'} \sum_{i\nu'}\]Gamma_{Abar{a}Bbar{b}}(mathbf{k}-mathbf{k}’, inu - inu’) \ times G_{Abar{c}}(mathbf{k}’, inu’) Delta_{bar{c}bar{d}}(mathbf{k}’, inu’) G_{Bbar{d}}(-mathbf{k}’, -inu’)
Parameters¶
- chi_pp particle-particle vertex \(\Gamma^{(pp)}_{a\bar{b}c\bar{d}}(\mathbf{k}, i\nu_n)\)
- g_kw single particle Green’s function \(G_{a\bar{b}}(\mathbf{k}, i\nu_n)\)
- delta_kw pairing self-energy \(\Delta_{\bar{a}\bar{b}}(\mathbf{k}, i\nu_n)\)
Returns¶
Gives the result of the product \(\Delta^{(out)} \sim \Gamma^{(pp)}GG \Delta\)