.. Generated automatically by cpp2rst .. highlight:: c .. role:: red .. role:: green .. role:: param .. _triqs_tprf__lattice_dyson_g_w: triqs_tprf::lattice_dyson_g_w ============================= *#include * **Synopsis** .. rst-class:: cppsynopsis | g_w_t :red:`lattice_dyson_g_w` (double :param:`mu`, e_k_cvt :param:`e_k`, g_w_cvt :param:`sigma_w`) Construct an interacting Matsubara frequency local (:math:`\mathbf{r}=\mathbf{0}`) lattice Green's function :math:`G_{a\bar{b}}(i\omega_n)` Computes .. math:: G_{a\bar{b}}(i\omega_n) = \frac{1}{N_k} \sum_\mathbf{k} \left[ (i\omega_n + \mu ) \cdot \mathbf{1} - \epsilon(\mathbf{k}) - \Sigma(i\omega_n) \right]^{-1}_{a\bar{b}}, using a discretized dispersion :math:`\epsilon_{\bar{a}b}(\mathbf{k})`, chemical potential :math:`\mu`, and a momentum independent Matsubara frequency self energy :math:`\Sigma_{\bar{a}b}(i\omega_n)`. Parameters ^^^^^^^^^^ * :param:`mu` chemical potential :math:`\mu` * :param:`e_k` discretized lattice dispersion :math:`\epsilon_{\bar{a}b}(\mathbf{k})` * :param:`sigma_w` imaginary frequency self-energy :math:`\Sigma_{\bar{a}b}(i\omega_n)` Returns ^^^^^^^ Matsubara frequency lattice Green's function :math:`G_{a\bar{b}}(i\omega_n, \mathbf{k})`