.. _rpa: Random phase approximation (RPA) ================================ Interaction ----------- In `triqs` the interaction Hamiltonian is represented as a sum of monomials of quartic operators .. math:: H_{int} = \sum_{ \{\bar{a}\bar{b}cd \}_s} V(\bar{a}\bar{b}cd) \,\, \bar{a} \bar{b} c d where the sum runs over all unique sets of :math:`\bar{a}\bar{b}cd` of normal ordered and lexicographically ordered operators. .. note:: This is a unique representation of the Hamiltonian and a unique representation of the prefactor :math:`V(\bar{a}\bar{b}cd)`, in contrast to representations where we allow any permutation of :math:`\bar{a}\bar{b}` and :math:`cd`. RPA tensor ---------- In RPA we approximate the vertex :math:`\Gamma` in the Bethe-Salpeter equation .. math:: \chi^{(PH)}(\bar{a}b\bar{c}d) = \chi_0(\bar{a}b\bar{c}d) + \chi_0(\bar{a}b\bar{p}q) \, \Gamma^{(PH)}(q\bar{p}s\bar{r}) \, \chi^{(PH)}(\bar{r}s\bar{c}d) by a constant rank 4 tensor :math:`U(\bar{a}b\bar{c}d)` .. math:: \Gamma^{(PH)}(q\bar{p}s\bar{r}) \approx U(q\bar{p}s\bar{r}) To determine the relation between :math:`U(\bar{a}b\bar{c}d)` and :math:`V(\bar{a}\bar{b}cd)` we expand :math:`\chi` to first order in :math:`V` The generalized susceptibility is defined as .. math:: \chi(\bar{a}b\bar{c}d) = \langle \bar{a}b\bar{c}d \rangle - \langle b \bar{a} \rangle \langle d \bar{c} \rangle to zeroth order in :math:`V` we get the bare susceptibility .. math:: [\chi]_0 = \chi_0 = - \langle d\bar{a} \rangle \langle b \bar{c} \rangle the first order is given by .. math:: [\chi]_1 = - \langle \bar{a}b\bar{c}d H_{int} \rangle + \langle b \bar{a} H_{int} \rangle \langle d \bar{c} \rangle + \langle b \bar{a} \rangle \langle d \bar{c} H_{int} \rangle \\ = \sum_{ \{\bar{A}\bar{B}CD \}_s } V(\bar{A}\bar{B}CD) \langle \bar{a}\bar{c} CD \rangle \langle bd \bar{A}\bar{B} \rangle where we in the last step perform the restricted summation over unique interaction terms, as defined above, and use the fact that all contractions of :math:`d\bar{c}` and :math:`b\bar{a}` in the first term are canceled by the two last terms. Performing the Wick contraction of the result and pairing the quadratic expectation values into :math:`\chi_0` terms gives .. math:: [\chi]_1 = \sum_{ \{ \bar{A}\bar{B}CD \}_s} V(\bar{A}\bar{B}CD) \Big[ \chi_0(\bar{a}b \bar{A}C) \chi_0(\bar{B}D\bar{c}d) - \chi_0(\bar{a}b \bar{A}D) \chi_0(\bar{B}C\bar{c}d) \\ - \chi_0(\bar{a}b \bar{B}C) \chi_0(\bar{A}D\bar{c}d) + \chi_0(\bar{a}b \bar{B}D) \chi_0(\bar{A}C\bar{c}d) \Big] by defining the tensor :math:`U` as .. math:: U(\bar{A}C\bar{B}D) = + V(\bar{A}\bar{B}CD)\\ U(\bar{A}D\bar{B}C) = - V(\bar{A}\bar{B}CD)\\ U(\bar{B}C\bar{A}D) = - V(\bar{A}\bar{B}CD)\\ U(\bar{B}D\bar{A}C) = + V(\bar{A}\bar{B}CD) we can rewrite the above equation as an unrestricted sum over :math:`U(\bar{A}B\bar{C}D)` .. math:: [\chi]_1 = \sum_{ \bar{A}B\bar{C}D } \chi_0(\bar{a}b\bar{A}B) U(\bar{A}B\bar{C}D) \chi_0(\bar{C}D\bar{c}d) which determines that the RPA :math:`U(\bar{A}C\bar{B}D)` tensor transforms as the prefactor of .. math:: -V(\bar{A}\bar{B}CD) \bar{A}\bar{B}CD under permutations of the indices.