.. _single_particle_gf: On the single particle Green's function ======================================= The imaginary time single particle Green's function is defined as .. math:: G_{a\bar{b}}(\tau_a, \tau_{\bar{b}}) \equiv - \langle \mathcal{T} c_{a}(\tau_a) c^\dagger_{\bar{b}}(\tau_{\bar{b}}) \rangle \, . It is time translational invariant and hence only depends on the time difference .. math:: G_{a\bar{b}}(\tau_a, \tau_{\bar{b}}) = G_{a\bar{b}}(\tau_a - \tau_{\bar{b}}) \equiv G_{a\bar{b}}(\tau) \, . Using the cyclicity of the trace (see the section on (anti-)periodicity), we can show that for :math:`0 < \tau < \beta`, the bosonic (fermionic) Green's function is :math:`\beta` (anti-)periodic, that is .. math:: G_{a\bar{b}}(- \tau) = \xi G_{a\bar{b}}(\beta - \tau) with :math:`\xi = \pm 1` for bosons (fermions). Hence, extending the function as an (anti-)periodic function to all real valued imaginary times :math:`\tau \in (-\infty, \infty)`, the Green's function can be expanded in the Matsubara Fourier series .. math:: G_{a\bar{b}}(\tau) = \frac{1}{\beta} \sum_{n=-\infty}^\infty e^{- i\nu_n \tau} G_{a\bar{b}}(\nu_n) \, , with Fourier coefficients .. math:: G_{a\bar{b}}(\nu_n) = \int_0^\beta d\tau e^{i\nu_n \tau} G_{a\bar{b}}(\tau) where :math:`\nu_n` are Matsubara frequencies .. math:: \nu_n = \frac{\pi}{\beta}(2n + \vartheta) with :math:`\vartheta = (1-\xi)/2`. From now on, we employ the :math:`\nu \ (\omega)` symbol to denote fermionic (bosonic) Matsubara frequencies. Field operator Matsubara transforms ----------------------------------- The notion of the Fourier series can be generalized to the second quantized (field) operators :math:`c(\tau)` and :math:`c^\dagger(\tau)` by introducing the transform relations .. math:: c(\nu_n) \equiv \frac{1}{\sqrt{\beta}} \int_0^\beta d\tau \, e^{i\nu_n \tau} c(\tau) \, , \quad c^\dagger(\nu_n) \equiv \frac{1}{\sqrt{\beta}} \int_0^\beta d\tau \, e^{-i\nu_n \tau} c^\dagger(\tau) .. math:: c(\tau) = \frac{1}{\sqrt{\beta}} \sum_{n=-\infty}^{\infty} e^{-i\nu_n \tau} c(\nu_n) \, , \quad c^\dagger(\tau) = \frac{1}{\sqrt{\beta}} \sum_{n=-\infty}^{\infty} e^{i\nu_n \tau} c^\dagger(\nu_n) The symmetic definition of the field operator transforms results in trivial relations for the two-frequency single particle Green's function .. math:: G(\nu, \nu') & = \frac{1}{\sqrt{\beta}} \int_0^\beta d\tau e^{i\nu\tau} \frac{1}{\sqrt{\beta}} \int_0^\beta d\tau' e^{-i\nu'\tau'} G(\tau, \tau') \\ & = \frac{1}{\sqrt{\beta}} \int_0^\beta d\tau e^{i\nu\tau} \frac{1}{\sqrt{\beta}} \int_0^\beta d\tau' e^{-i\nu'\tau'} \frac{1}{\beta} \sum_{n=-\infty}^\infty e^{-i \nu''_n (\tau - \tau')} G(\nu''_n) \\ & = \frac{1}{\beta^2} \sum_{n=-\infty}^\infty G(\nu''_n) \int_0^\beta d\tau e^{(i\nu - i\nu''_n)\tau} \int_0^\beta d\tau' e^{(-i\nu' + i\nu''_n)\tau'} \\ & = \frac{1}{\beta^2} \sum_{n=-\infty}^\infty G(\nu''_n) \cdot \beta \delta_{\nu, \nu''_n} \cdot \beta \delta_{\nu', \nu''_n} \\ & = \delta_{\nu, \nu'} G(\nu) Thus there is no scale factor relating the one and two frequency single particle Green's function .. math:: G(\nu, \nu') = \delta_{\nu, \nu'} G(\nu) \, .