.. Generated automatically by cpp2rst .. highlight:: c .. role:: red .. role:: green .. role:: param .. _triqs_tprf__g0w_sigma: triqs_tprf::g0w_sigma ===================== *#include * **Synopsis** .. rst-class:: cppsynopsis 1. | array, 2> :red:`g0w_sigma` (double :param:`mu`, | double :param:`beta`, | e_k_cvt :param:`e_k`, | chi_k_cvt :param:`v_k`, | mesh::brzone::value_t :param:`kpoint`) 2. | e_k_t :red:`g0w_sigma` (double :param:`mu`, double :param:`beta`, e_k_cvt :param:`e_k`, chi_k_cvt :param:`v_k`, mesh::brzone :param:`kmesh`) 3. | e_k_t :red:`g0w_sigma` (double :param:`mu`, double :param:`beta`, e_k_cvt :param:`e_k`, chi_k_cvt :param:`v_k`) 4. | g_f_t :red:`g0w_sigma` (double :param:`mu`, | double :param:`beta`, | e_k_cvt :param:`e_k`, | chi_fk_cvt :param:`W_fk`, | chi_k_cvt :param:`v_k`, | double :param:`delta`, | mesh::brzone::value_t :param:`kpoint`) 5. | g_fk_t :red:`g0w_sigma` (double :param:`mu`, | double :param:`beta`, | e_k_cvt :param:`e_k`, | chi_fk_cvt :param:`W_fk`, | chi_k_cvt :param:`v_k`, | double :param:`delta`, | mesh::brzone :param:`kmesh`) 6. | g_fk_t :red:`g0w_sigma` (double :param:`mu`, double :param:`beta`, e_k_cvt :param:`e_k`, chi_fk_cvt :param:`W_fk`, chi_k_cvt :param:`v_k`, double :param:`delta`) Documentation **1)** Some documentation **2)** Some documentation **3)** GW self energy :math:`\Sigma(\mathbf{k})` calculator for static interactions Computes the GW self-energy of a static interaction as the product .. math:: \Sigma_{ab}(\mathbf{k}) = \frac{-1}{N_k} \sum_{\mathbf{q}} \sum_{l} U_{al}(\mathbf{k}+\mathbf{q}) U^\dagger_{lb}(\mathbf{k}+\mathbf{q}) V_{aabb}(\mathbf{q}) f(\epsilon_{\mathbf{k}+\mathbf{q}, l}) where the :math:`U(\mathbf{k})` matrices are the diagonalizing unitary transform of the matrix valued dispersion relation :math:`\epsilon_{\bar{a}b}(\mathbf{k})`, i.e. .. math:: \sum_{\bar{a}b} U^\dagger_{i\bar{a}}(\mathbf{k}) \epsilon_{\bar{a}b}(\mathbf{k}) U_{bj} (\mathbf{k}) = \delta_{ij} \epsilon_{\mathbf{k}, i} **4)** some documentation **5)** some documentation **6)** Real frequency GW self energy :math:`\Sigma(\omega, \mathbf{k})` calculator via the spectral representation Computes the spectral function of the dynamic part of the screened interaction .. math:: W^{(spec)}_{ab}(\omega, \mathbf{k}) = \frac{-1}{\pi} \text{Im} \left( W_{aabb}(\omega, \mathbf{k}) - V_{aabb}(\mathbf{k}) \right) and constructs the GW self energy via the spectral representation .. math:: \Sigma_{ab}(\omega, \mathbf{k}) = \frac{-1}{N_k} \sum_{\mathbf{q}} \sum_{l} U_{al}(\mathbf{k}+\mathbf{q}) U^{\dagger}_{lb}(\mathbf{k}+\mathbf{q}) V_{aabb}(\mathbf{q}) f(\epsilon_{\mathbf{k}+\mathbf{q}, l}) \\ + \frac{\delta_{\omega}}{N_k} \sum_{\mathbf{q}} \sum_{\omega'} U_{al}(\mathbf{k}+\mathbf{q}) U^{\dagger}_{lb}(\mathbf{k}+\mathbf{q}) W^{(spec)}_{ab}(\omega', \mathbf{q}) \frac{n_B(\omega') + f(\epsilon_{\mathbf{k}+\mathbf{q}, l})}{\omega + i\delta + \omega' - \epsilon_{\mathbf{k}+\mathbf{q}, l} + \mu} where :math:`\delta_{\omega}` is the real-frequency mesh spacing and the :math:`U(\mathbf{k})` matrices are the diagonalizing unitary transform of the matrix valued dispersion relation :math:`\epsilon_{\bar{a}b}(\mathbf{k})`, i.e. .. math:: \sum_{\bar{a}b} U^\dagger_{i\bar{a}}(\mathbf{k}) \epsilon_{\bar{a}b}(\mathbf{k}) U_{bj} (\mathbf{k}) = \delta_{ij} \epsilon_{\mathbf{k}, i} Parameters ^^^^^^^^^^ * :param:`mu` chemical potential :math:`\mu` * :param:`beta` inverse temperature * :param:`e_k` discretized lattice dispersion :math:`\epsilon_{\bar{a}b}(\mathbf{k})` * :param:`V_k` bare interaction :math:`V_{abcd}(\mathbf{k})` * :param:`W_fk` fully screened interaction :math:`W_{abcd}(\omega, \mathbf{k})` * :param:`delta` broadening :math:`\delta` Returns ^^^^^^^ static GW self-energy :math:`\Sigma_{ab}(\mathbf{k})`