.. Generated automatically by cpp2rst .. highlight:: c .. role:: red .. role:: green .. role:: param .. _triqs_tprf__lattice_dyson_g_wk: triqs_tprf::lattice_dyson_g_wk ============================== *#include * **Synopsis** .. rst-class:: cppsynopsis 1. | g_wk_t :red:`lattice_dyson_g_wk` (double :param:`mu`, e_k_cvt :param:`e_k`, g_w_cvt :param:`sigma_w`) 2. | g_wk_t :red:`lattice_dyson_g_wk` (double :param:`mu`, e_k_cvt :param:`e_k`, g_wk_cvt :param:`sigma_wk`) 3. | g_Dwk_t :red:`lattice_dyson_g_wk` (double :param:`mu`, e_k_cvt :param:`e_k`, g_Dwk_cvt :param:`sigma_wk`) 4. | g_wk_t :red:`lattice_dyson_g_wk` (double :param:`mu`, e_k_cvt :param:`e_k`, g_w_cvt :param:`sigma_w`) 5. | g_Dwk_t :red:`lattice_dyson_g_wk` (double :param:`mu`, e_k_cvt :param:`e_k`, g_Dw_cvt :param:`sigma_w`) Documentation **1)** Construct an interacting Matsubara frequency lattice Green's function :math:`G_{a\bar{b}}(i\omega_n, \mathbf{k})` Computes .. math:: G_{a\bar{b}}(i\omega_n, \mathbf{k}) = \left[ (i\omega_n + \mu ) \cdot \mathbf{1} - \epsilon(\mathbf{k}) - \Sigma(i\omega_n) \right]^{-1}_{a\bar{b}}, using a discretized dispersion :math:`\epsilon_{\bar{a}b}(\mathbf{k})`, chemical potential :math:`\mu`, and a momentum independent Matsubara frequency self energy :math:`\Sigma_{\bar{a}b}(i\omega_n)`. **2)** Construct an interacting Matsubara frequency lattice Green's function :math:`G_{a\bar{b}}(i\omega_n, \mathbf{k})` Computes .. math:: G_{a\bar{b}}(i\omega_n, \mathbf{k}) = \left[ (i\omega_n + \mu ) \cdot \mathbf{1} - \epsilon(\mathbf{k}) - \Sigma(i\omega_n, \mathbf{k}) \right]^{-1}_{a\bar{b}}, using a discretized dispersion :math:`\epsilon_{\bar{a}b}(\mathbf{k})`, chemical potential :math:`\mu`, and a Matsubara frequency self energy :math:`\Sigma_{\bar{a}b}(i\omega_n, \mathbf{k})`. **3)** Construct an interacting Matsubara frequency lattice Green's function :math:`G_{a\bar{b}}(i\omega_n, \mathbf{k})` Computes .. math:: G_{a\bar{b}}(i\omega_n, \mathbf{k}) = \left[ (i\omega_n + \mu ) \cdot \mathbf{1} - \epsilon(\mathbf{k}) - \Sigma(i\omega_n, \mathbf{k}) \right]^{-1}_{a\bar{b}}, using a discretized dispersion :math:`\epsilon_{\bar{a}b}(\mathbf{k})`, chemical potential :math:`\mu`, and a Matsubara frequency self energy :math:`\Sigma_{\bar{a}b}(i\omega_n, \mathbf{k})`. **4)** Construct an interacting Matsubara frequency lattice Green's function :math:`G_{a\bar{b}}(i\omega_n, \mathbf{k})` Computes .. math:: G_{a\bar{b}}(i\omega_n, \mathbf{k}) = \left[ (i\omega_n + \mu ) \cdot \mathbf{1} - \epsilon(\mathbf{k}) - \Sigma(i\omega_n) \right]^{-1}_{a\bar{b}}, using a discretized dispersion :math:`\epsilon_{\bar{a}b}(\mathbf{k})`, chemical potential :math:`\mu`, and a momentum independent Matsubara frequency self energy :math:`\Sigma_{\bar{a}b}(i\omega_n)`. **5)** Construct an interacting Matsubara frequency lattice Green's function :math:`G_{a\bar{b}}(i\omega_n, \mathbf{k})` Computes .. math:: G_{a\bar{b}}(i\omega_n, \mathbf{k}) = \left[ (i\omega_n + \mu ) \cdot \mathbf{1} - \epsilon(\mathbf{k}) - \Sigma(i\omega_n) \right]^{-1}_{a\bar{b}}, using a discretized dispersion :math:`\epsilon_{\bar{a}b}(\mathbf{k})`, chemical potential :math:`\mu`, and a Matsubara frequency self energy :math:`\Sigma_{\bar{a}b}(i\omega_n)`. Parameters ^^^^^^^^^^ * :param:`mu` chemical potential :math:`\mu` * :param:`e_k` discretized lattice dispersion :math:`\epsilon_{\bar{a}b}(\mathbf{k})` * :param:`sigma_w` imaginary frequency self-energy :math:`\Sigma_{\bar{a}b}(i\omega_n)` * :param:`sigma_wk` imaginary frequency self-energy :math:`\Sigma_{\bar{a}b}(i\omega_n, \mathbf{k})` Returns ^^^^^^^ Matsubara frequency lattice Green's function :math:`G_{a\bar{b}}(i\omega_n, \mathbf{k})`