.. Generated automatically by cpp2rst .. highlight:: c .. role:: red .. role:: green .. role:: param .. _triqs_tprf__lindhard_chi00: triqs_tprf::lindhard_chi00 ========================== *#include * **Synopsis** .. rst-class:: cppsynopsis 1. | chi_wk_t :red:`lindhard_chi00` (e_k_cvt :param:`e_k`, mesh::imfreq :param:`mesh`, double :param:`mu`) 2. | chi_fk_t :red:`lindhard_chi00` (e_k_cvt :param:`e_k`, mesh::refreq :param:`mesh`, double :param:`beta`, double :param:`mu`, double :param:`delta`) Documentation **1)** Generalized Lindhard susceptibility in the particle-hole channel :math:`\chi^{(00)}_{\bar{a}b\bar{c}d}(i\omega_n, \mathbf{q})`. Analytic calculation of the generalized (non-interacting) Lindhard susceptibility in the particle-hole channel. The analytic expression is obtained using residue calculus to explicitly evaluate the matsubara sum of the fourier transformed imaginary time bubble product of two non-interacting single-particle Green's functions. .. math:: G^{(0)}_{a\bar{b}}(\mathbf{k}, i\omega_n) = \left[ i\omega_n \cdot \mathbf{1} - \epsilon(\mathbf{k}) \right]^{-1} . The analytic evaluation of the bubble diagram gives .. math:: \chi^{(00)}_{\bar{a}b\bar{c}d}(i\omega_n, \mathbf{q}) \equiv \mathcal{F} \left\{ - G^{(0)}_{d\bar{a}}(\tau, \mathbf{r}) G^{(0)}_{b\bar{c}}(-\tau, -\mathbf{r}) \right\} = - \frac{1}{N_k} \sum_{\nu} \sum_{\mathbf{k}} G^{(0)}_{d\bar{a}}(\nu, \mathbf{k}) G^{(0)}_{b\bar{c}}(\nu + \omega, \mathbf{k} + \mathbf{q}) \\ = - \frac{1}{N_k} \sum_{\nu} \sum_{\mathbf{k}} \left( \sum_{i} U^\dagger_{di}(\mathbf{k}) \frac{1}{i\nu - \epsilon_{\mathbf{k}, i}} U_{i\bar{a}}(\mathbf{k}) \right) \left( \sum_j U^\dagger_{bj}(\mathbf{k} + \mathbf{q}) \frac{1}{i\nu + i\omega - \epsilon_{\mathbf{k} + \mathbf{q}, j}} U_{j\bar{c}}(\mathbf{k} + \mathbf{q}) \right) \\ = \frac{1}{N_k} \sum_{\mathbf{k}} \sum_{ij} \left( [1 - \delta_{0, \omega_n} \delta_{\epsilon_{\mathbf{k},i},\epsilon_{\mathbf{k}+\mathbf{q}, j}})] \frac{ f(\epsilon_{\mathbf{k}, i}) - f(\epsilon_{\mathbf{k}+\mathbf{q}, j}) } {i\omega_n + \epsilon_{\mathbf{k} + \mathbf{q}, j} - \epsilon_{\mathbf{k}, i}} + \delta_{0, \omega_n} \delta_{\epsilon_{\mathbf{k},i},\epsilon_{\mathbf{k}+\mathbf{q}, j}} \frac{\beta}{4 \cosh^2 (\beta \epsilon_{\mathbf{k}, i} / 2) } \right) \\ \times U_{\bar{a}i}(\mathbf{k}) U^\dagger_{id}(\mathbf{k}) U_{\bar{c}j}(\mathbf{k} + \mathbf{q}) U^\dagger_{jb}(\mathbf{k} + \mathbf{q}) where the :math:`U(\mathbf{k})` matrices are the diagonalizing unitary transform of the matrix valued dispersion relation :math:`\epsilon_{\bar{a}b}(\mathbf{k})`, i.e. **2)** Generalized Lindhard susceptibility in the particle-hole channel and for real frequencies :math:`\chi^{(00)}_{\bar{a}b\bar{c}d}(\omega, \mathbf{q})`. Analytic calculation of the generalized (non-interacting) Lindhard susceptibility in the particle-hole channel in real frequencies. The analytic expression is obtained using residue calculus to explicitly evaluate the matsubara sum of the fourier transformed imaginary time bubble product of two non-interacting single-particle Green's functions. .. math:: G^{(0)}_{a\bar{b}}(\mathbf{k}, i\omega_n) = \left[ i\omega_n \cdot \mathbf{1} - \epsilon(\mathbf{k}) \right]^{-1} . The analytic continuation of the resulting expression to the real frequency axis gives .. math:: \chi^{(00)}_{\bar{a}b\bar{c}d}(\omega, \mathbf{q}) = \frac{1}{N_k} \sum_{\mathbf{k}} \sum_{ij} \frac{ f(\epsilon_{\mathbf{k}, i}) - f(\epsilon_{\mathbf{k}+\mathbf{q}, j}) } {\omega + i\delta + \epsilon_{\mathbf{k} + \mathbf{q}, j} - \epsilon_{\mathbf{k}, i}} \\ \times U_{\bar{a}i}(\mathbf{k}) U^\dagger_{id}(\mathbf{k}) U_{\bar{c}j}(\mathbf{k} + \mathbf{q}) U^\dagger_{jb}(\mathbf{k} + \mathbf{q}) where the :math:`U(\mathbf{k})` matrices are the diagonalizing unitary transform of the matrix valued dispersion relation :math:`\epsilon_{\bar{a}b}(\mathbf{k})`, i.e. .. math:: \sum_{\bar{a}b} U_{i\bar{a}}(\mathbf{k}) \epsilon_{\bar{a}b}(\mathbf{k}) U^\dagger_{bj} (\mathbf{k}) = \delta_{ij} \epsilon_{\mathbf{k}, i} Parameters ^^^^^^^^^^ * :param:`e_k` discretized lattice dispersion :math:`\epsilon_{\bar{a}b}(\mathbf{k})` * :param:`mesh` bosonic Matsubara frequency mesh * :param:`mu` chemical potential :math:`\mu` * :param:`beta` inverse temperature * :param:`delta` broadening :math:`\delta` Returns ^^^^^^^ real frequency generalized Lindhard susceptibility in the particle-hole channel :math:`\chi^{(00)}_{\bar{a}b\bar{c}d}(\omega, \mathbf{q})`