.. Generated automatically by cpp2rst .. highlight:: c .. role:: red .. role:: green .. role:: param .. _triqs_tprf__construct_phi_wk: triqs_tprf::construct_phi_wk ============================ *#include * **Synopsis** .. rst-class:: cppsynopsis | chi_wk_t :red:`construct_phi_wk` (chi_wk_vt :param:`chi`, array_contiguous_view, 4> :param:`U`) Computes reducible ladder vertex for the approximation of a local and static vertex. In this approximation the reducible ladder vertex in density/magnetic channel are given by .. math:: \Phi^{\text{d/m}}_{a\overline{b}c\overline{d}}(Q) &\approx \frac{1}{(N_\mathbf{k}\beta)^2} \sum_{K'', K'''} U^{\text{d/m}}\chi^{\text{d/m}}(Q, K'', K''') U^{\text{d/m}} \\ &\approx U^{\mathrm{d/m}} \chi^{\text{d/m}}(Q) U^{\mathrm{d/m}}\,, where all products are particle-hole products. The reducible ladder vertex in then only dependent on one bosonic frequency and momentum. It can then be used in :meth:`triqs_tprf.eliashberg.construct_gamma_singlet_rpa` or :meth:`triqs_tprf.eliashberg.construct_gamma__rpa` to construct the irreducible singlet/triplet vertex. Parameters ^^^^^^^^^^ * :param:`chi` density/magnetic susceptibility :math:`\chi^{\mathrm{d/m}}_{\bar{a}b\bar{c}d}(i\omega_n,\mathbf{q})` * :param:`U` density/magnetic local and static vertex :math:`U^{\mathrm{d/m}}_{a\bar{b}c\bar{d}}` Returns ^^^^^^^ The reducible ladder vertex in the density/magnetic channel :math:`\Phi^{\mathrm{d/m}}(i\omega_n,\mathbf{q})`