.. Generated automatically by cpp2rst .. highlight:: c .. role:: red .. role:: green .. role:: param .. _triqs_tprf__eliashberg_product_fft: triqs_tprf::eliashberg_product_fft ================================== *#include * **Synopsis** .. rst-class:: cppsynopsis | g_wk_t :red:`eliashberg_product_fft` (chi_tr_vt :param:`Gamma_pp_dyn_tr`, | chi_r_vt :param:`Gamma_pp_const_r`, | g_wk_vt :param:`g_wk`, | g_wk_vt :param:`delta_wk`) Linearized Eliashberg product via FFT Computes the linearized Eliashberg product in the singlet/triplet channel given by .. math:: \Delta^{\mathrm{s/t}, \mathrm{out}}_{\bar{a}\bar{b}}(i\nu,\mathbf{k}) = -\frac{1}{2N_\mathbf{k} \beta}\sum_{i\nu'}\sum_{\mathbf{k}'} \Gamma^{\mathrm{s/t}}_{c\bar{a}d\bar{b}}(i\nu - i\nu',\mathbf{k}-\mathbf{k}') \\ \times G_{c\bar{e}}(i\nu',\mathbf{k}') G_{d\bar{f}}(-i\nu',-\mathbf{k}') \Delta^{\mathrm{s/t}, \mathrm{in}}_{\bar{e}\bar{f}}(i\nu',\mathbf{k}')\,, by taking advantage of the convolution theorem. We therefore first calculate .. math:: F^{\mathrm{s/t}}_{ab}(i\nu,\mathbf{k}) = G_{a\bar{c}}(i\nu,\mathbf{k}) G_{b\bar{d}}(-i\nu,-\mathbf{k}) \Delta^{\mathrm{s/t}, \mathrm{in}}_{\bar{c}\bar{d}}(i\nu,\mathbf{k})\,, which we then Fourier transform to imaginary time and real-space .. math:: F^{\mathrm{s/t}}_{ab}(\tau,\mathbf{r}) = \mathcal{F}^2 \big( F^{\mathrm{s/t}}_{ab}(i\nu,\mathbf{k}) \big)\,. We then calculate first the dynamic gap .. math:: \Delta^{\mathrm{s/t}, \mathrm{dynamic}}_{\bar{a}\bar{b}}(\tau,\mathbf{r}) = -\frac{1}{2} \Gamma^{\mathrm{s/t}, \mathrm{dynamic}}_{c\bar{a}d\bar{b}}(\tau, \mathbf{r}) F^{\mathrm{s/t}}_{cd}(\tau, \mathbf{r})\,, and then the static gap .. math:: \Delta^{\mathrm{s/t}, \mathrm{static}}_{\bar{a}\bar{b}}(\mathbf{r}) = -\frac{1}{2} \Gamma^{\mathrm{s/t}, \mathrm{static}}_{c\bar{a}d\bar{b}}(\mathbf{r}) F^{\mathrm{s/t}}_{cd}(\tau=0, \mathbf{r})\,. We then Fourier transform the dynamic gap to imaginary frequencies .. math:: \Delta^{\mathrm{s/t}, \mathrm{dynamic}}_{\bar{a}\bar{b}}(i\nu_n,\mathbf{r}) = \mathcal{F} \big( \Delta^{\mathrm{s/t}, \mathrm{dynamic}}_{\bar{a}\bar{b}}(\tau,\mathbf{r}) \big)\,, and then add both component together .. math:: \Delta^{\mathrm{s/t}, \mathrm{out}}_{\bar{a}\bar{b}}(i\nu_n,\mathbf{r}) = \Delta^{\mathrm{s/t}, \mathrm{dynamic}}_{\bar{a}\bar{b}}(i\nu_n,\mathbf{r}) + \Delta^{\mathrm{s/t}, \mathrm{static}}_{\bar{a}\bar{b}}(\mathbf{r})\,, and then finally Fourier transform to :math:`\mathbf{k}`-space .. math:: \Delta^{\mathrm{s/t}, \mathrm{out}}_{\bar{a}\bar{b}}(i\nu_n,\mathbf{k}) = \mathcal{F} \big( \Delta^{\mathrm{s/t}, \mathrm{out}}_{\bar{a}\bar{b}}(i\nu_n,\mathbf{r}) \big)\,. Parameters ^^^^^^^^^^ * :param:`Gamma_pp_dyn_tr` dynamic part of the particle-particle vertex :math:`\Gamma^{\mathrm{s/t}, \mathrm{dynamic}}_{c\bar{a}d\bar{b}}(\tau, \mathbf{r})` * :param:`Gamma_pp_const_r` static part of the particle-particle vertex :math:`\Gamma^{\mathrm{s/t}, \mathrm{static}}_{c\bar{a}d\bar{b}}(\mathbf{r})` * :param:`g_wk` one-particle Green's function :math:`G_{a\bar{b}}(i\nu_n,\mathbf{k})` * :param:`delta_wk` superconducting gap :math:`\Delta^{\mathrm{s/t}, \mathrm{in}}_{\bar{a}\bar{b}}(i\nu_n,\mathbf{k})` Returns ^^^^^^^ Gives the result of the product :math:`\Delta^{\mathrm{s/t}, \mathrm{out}}`