.. Generated automatically by cpp2rst .. highlight:: c .. role:: red .. role:: green .. role:: param .. _triqs_tprf__gw_sigma: triqs_tprf::gw_sigma ==================== *#include * **Synopsis** .. rst-class:: cppsynopsis 1. | g_wk_t :red:`gw_sigma` (chi_wk_cvt :param:`W_wk`, g_wk_cvt :param:`g_wk`) 2. | g_Dwk_t :red:`gw_sigma` (chi_Dwk_cvt :param:`W_wk`, chi_k_cvt :param:`v_k`, g_Dwk_cvt :param:`g_wk`) 3. | e_k_t :red:`gw_sigma` (chi_k_cvt :param:`v_k`, g_wk_cvt :param:`g_wk`) Documentation **1)** GW self energy :math:`\Sigma(i\omega_n, \mathbf{k})` calculator for dynamic interactions Splits the interaction into a dynamic and a static part .. math :: W_{abcd}(i\omega_n, \mathbf{k}) = W^{(dyn)}_{abcd}(i\omega_n, \mathbf{k}) + V_{abcd}(\mathbf{k}) by fitting the high-frequency tail. Fourier transforms the dynamic part of the interaction and the single-particle Green's function to imaginary time and real space. .. math:: G_{ab}(\tau, \mathbf{r}) = \mathcal{F}^{-1} \left\{ G_{ab}(i\omega_n, \mathbf{k}) \right\} .. math:: W^{(dyn)}_{abcd}(\tau, \mathbf{r}) = \mathcal{F}^{-1} \left\{ W^{(dyn)}_{abcd}(i\omega_n, \mathbf{k}) \right\} computes the GW self-energy as the product .. math:: \Sigma^{(dyn)}_{ab}(\tau, \mathbf{r}) = - \sum_{cd} W^{(dyn)}_{acdb}(\tau, \mathbf{r}) G_{cd}(\tau, \mathbf{r}) and transforms back to frequency and momentum .. math:: \Sigma^{(dyn)}_{ab}(i\omega_n, \mathbf{k}) = \mathcal{F} \left\{ \Sigma^{(dyn)}_{ab}(\tau, \mathbf{r}) \right\} The self-energy of the static part of the interaction is calculated as the sum .. math:: \Sigma^{(stat)}_{ab}(\mathbf{k}) = -\frac{1}{N_k} \sum_{\mathbf{q},cd} V_{acdb}(\mathbf{k}) \rho_{dc}(\mathbf{k} + \mathbf{q}) where :math:`\rho_{ab}(\mathbf{k}) = -G_{ba}(\beta, \mathbf{k})` is the density matrix of the single particle Green's function. The total GW self-energy is given by .. math:: \Sigma_{ab}(i\omega_n, \mathbf{k}) = \Sigma^{(dyn)}_{ab}(i\omega_n, \mathbf{k}) + \Sigma^{(stat)}_{ab}(\mathbf{k}) **2)** GW self energy :math:`\Sigma(i\omega_n, \mathbf{k})` calculator for dynamic interactions Fourier transforms the dynamic part of the interaction and the single-particle Green's function to imaginary time and real space. .. math:: G_{ab}(\tau, \mathbf{r}) = \mathcal{F}^{-1} \left\{ G_{ab}(i\omega_n, \mathbf{k}) \right\} .. math:: W^{(dyn)}_{abcd}(\tau, \mathbf{r}) = \mathcal{F}^{-1} \left\{ W^{(dyn)}_{abcd}(i\omega_n, \mathbf{k}) \right\} computes the GW self-energy as the product .. math:: \Sigma^{(dyn)}_{ab}(\tau, \mathbf{r}) = - \sum_{cd} W^{(dyn)}_{acdb}(\tau, \mathbf{r}) G_{cd}(\tau, \mathbf{r}) and transforms back to frequency and momentum .. math:: \Sigma^{(dyn)}_{ab}(i\omega_n, \mathbf{k}) = \mathcal{F} \left\{ \Sigma^{(dyn)}_{ab}(\tau, \mathbf{r}) \right\} The self-energy of the static part of the interaction is calculated as the sum .. math:: \Sigma^{(stat)}_{ab}(\mathbf{k}) = -\frac{1}{N_k} \sum_{\mathbf{q},cd} V_{acdb}(\mathbf{k}) \rho_{dc}(\mathbf{k} + \mathbf{q}) where :math:`\rho_{ab}(\mathbf{k}) = -G_{ba}(\beta, \mathbf{k})` is the density matrix of the single particle Green's function. The total GW self-energy is given by .. math:: \Sigma_{ab}(i\omega_n, \mathbf{k}) = \Sigma^{(dyn)}_{ab}(i\omega_n, \mathbf{k}) + \Sigma^{(stat)}_{ab}(\mathbf{k}) **3)** Static GW self energy :math:`\Sigma_{ab}(\mathbf{k})` calculator Computes the static GW self-energy (equivalent to the Fock self-energy) Parameters ^^^^^^^^^^ * :param:`W_wk` interaction :math:`W_{abcd}(i\omega_n, \mathbf{k})` * :param:`g_wk` single particle Green's function :math:`G_{ab}(i\omega_n, \mathbf{k})` * :param:`V_k` static interaction :math:`V_{abcd}(\mathbf{q})` Returns ^^^^^^^ Static GW self-energy (Fock) :math:`\Sigma_{ab}(\mathbf{k})`