.. _boundary_conditions: (Anti-)Periodicity ================== Note that the Heisenberg representation the imaginary time dependence of creation and annihilation operators are not conjugated, i.e. :math:`c(\tau) \equiv e^{\tau H} c e^{-\tau H}` and :math:`c^\dagger(\tau) \equiv e^{\tau H} c^\dagger e^{-\tau H}` .. math:: G_{a\bar{b}}(\tau) \equiv - \langle \mathcal{T} a(\tau) \bar{b}(0) \rangle \equiv - \frac{1}{\mathcal{Z}} \textrm{Tr} \big[ \mathcal{T} e^{-\int_0^\beta d\bar{\tau} \, H(\bar{\tau})} a(\tau) \bar{b} \big] To derive the boundary conditions we consider two cases. First, for :math:`0 < \tau < \beta` we have .. math:: G_{a\bar{b}}(\tau) \Big|_{0 < \tau < \beta} & = - \langle a(\tau) \bar{b}(0) \rangle = - \frac{1}{\mathcal{Z}} \textrm{Tr} \big[ e^{-\beta H} e^{\tau H} a e^{-\tau H} \bar{b} \big] \\ & = - \frac{1}{\mathcal{Z}} \textrm{Tr} \big[ e^{-\beta H} \bar{b}(0) e^{(\tau - \beta) H} a e^{-(\tau - \beta) H} \big] = - \langle \bar{b}(0) a(\tau - \beta) \rangle \\ & = - \xi \langle \mathcal{T} a(\tau - \beta) \bar{b}(0) \rangle \Big|_{0 < \tau < \beta} = \xi G_{a\bar{b}}(\tau - \beta) \Big|_{0 < \tau < \beta} while for :math:`-\beta < \tau < 0` one get .. math:: G_{a\bar{b}}(\tau) \Big|_{- \beta < \tau < 0} & = - \xi \langle \bar{b}(0) a(\tau) \rangle = - \frac{\xi}{\mathcal{Z}} \textrm{Tr} \big[ e^{-\beta H} \bar{b} e^{\tau H} a e^{-\tau H} \big] \\ & = - \frac{\xi}{\mathcal{Z}} \textrm{Tr} \big[ e^{-\beta H} e^{(\tau + \beta) H} a e^{-(\tau + \beta) H} \bar{b}(0) \big] = - \xi \langle a(\tau + \beta) \bar{b}(0) \rangle \\ & = - \xi \langle \mathcal{T} a(\tau + \beta) \bar{b}(0) \rangle \Big|_{-\beta < \tau < 0} = \xi G_{a\bar{b}}(\tau + \beta) \Big|_{-\beta < \tau < 0}. Thus we see that the single-particle Green's function :math:`G_{a\bar{b}}(\tau)` is :math:`\beta` (anti-)periodic on :math:`\tau \in [\beta, -\beta]`: .. math:: G_{a\bar{b}}(\tau) \Big|_{0 < \tau < \beta} & = \xi G_{a\bar{b}}(\tau - \beta) \Big|_{0 < \tau < \beta}, \\ G_{a\bar{b}}(\tau) \Big|_{-\beta < \tau < 0} & = \xi G_{a\bar{b}}(\tau + \beta) \Big|_{-\beta < \tau < 0}. Two-particle Green's functions ------------------------------ The (anti-)periodicity properties can be generalized to two-particle Green's functions in imaginary time. Consider now :math:`G^{(2)}_{\bar{a}b\bar{c}d}(\tau_{\bar{a}},\tau_b, \tau_{\bar{c}}, \tau_d=0)`, the cyclic property of the trace and the time-ordering operator (assuming that all operators are either fermionic or bosonic) then yield in the same way .. math:: G^{(2)}_{\bar{a}b\bar{c}d}(\tau_{\bar{a}}, \tau_b, \tau_{\bar{c}}, \tau_d=0) \equiv \langle \mathcal{T} \bar{a}(\tau_{\bar{a}}) b(\tau_b) \bar{c}(\tau_{\bar{c}}) d(0) \rangle As an example we take the case :math:`\beta > \tau_{\bar{a}} > \tau_b, \tau_{\bar{c}} > 0`: .. math:: G^{(2)}_{\bar{a}b\bar{c}d}(\tau_{\bar{a}}, \tau_b, \tau_{\bar{c}}, \tau_d=0) & \equiv \langle \bar{a}(\tau_{\bar{a}}) \big[ \mathcal{T} b(\tau_b) \bar{c}(\tau_{\bar{c}}) \big] d(0) \rangle \\ & = \langle \big[ \mathcal{T} b(\tau_b) \bar{c}(\tau_{\bar{c}}) \big] d(0) \bar{a}(\tau_{\bar{a}} - \beta) \rangle \\ & = \xi \langle \mathcal{T} \bar{a}(\tau_{\bar{a}} - \beta) b(\tau_b) \bar{c}(\tau_{\bar{c}}) d(0) \rangle \\ & = \xi G^{(2)}_{\bar{a}b\bar{c}d}( \tau_{\bar{a}} - \beta, \tau_b, \tau_{\bar{c}}, 0). In the same way the three periodicity relations read .. math:: G^{(2)}_{\bar{a}b\bar{c}d}(\tau_{\bar{a}}, \tau_b, \tau_{\bar{c}}) \Big|_{\beta > \tau_{\bar{a}} > \tau_b, \tau_{\bar{c}} > 0} = \xi G^{(2)}_{\bar{a}b\bar{c}d}( \tau_{\bar{a}} - \beta, \tau_b, \tau_{\bar{c}}, 0) \\ G^{(2)}_{\bar{a}b\bar{c}d}(\tau_{\bar{a}}, \tau_b, \tau_{\bar{c}}) \Big|_{\beta > \tau_{b} > \tau_{\bar{a}}, \tau_{\bar{c}} > 0} = \xi G^{(2)}_{\bar{a}b\bar{c}d}( \tau_{\bar{a}}, \tau_b - \beta, \tau_{\bar{c}}, 0) \\ G^{(2)}_{\bar{a}b\bar{c}d}(\tau_{\bar{a}}, \tau_b, \tau_{\bar{c}}) \Big|_{\beta > \tau_{\bar{c}} > \tau_{\bar{a}}, \tau_{b} > 0} = \xi G^{(2)}_{\bar{a}b\bar{c}d}( \tau_{\bar{a}}, \tau_b, \tau_{\bar{c}} - \beta, 0) and the second triple of relations become .. math:: G^{(2)}_{\bar{a}b\bar{c}d}(\tau_{\bar{a}}, \tau_b, \tau_{\bar{c}}) \Big|_{\beta > \tau_b, \tau_{\bar{c}} > 0 > \tau_{\bar{a}} > -\beta} = \xi G^{(2)}_{\bar{a}b\bar{c}d}( \tau_{\bar{a}} + \beta, \tau_b, \tau_{\bar{c}}, 0) \\ G^{(2)}_{\bar{a}b\bar{c}d}(\tau_{\bar{a}}, \tau_b, \tau_{\bar{c}}) \Big|_{\beta > \tau_{\bar{a}}, \tau_{\bar{c}} > 0 > \tau_{b} > -\beta} = \xi G^{(2)}_{\bar{a}b\bar{c}d}( \tau_{\bar{a}}, \tau_b + \beta, \tau_{\bar{c}}, 0) \\ G^{(2)}_{\bar{a}b\bar{c}d}(\tau_{\bar{a}}, \tau_b, \tau_{\bar{c}}) \Big|_{\beta > \tau_{\bar{a}}, \tau_{b} > 0 > \tau_{\bar{c}} > -\beta} = \xi G^{(2)}_{\bar{a}b\bar{c}d}( \tau_{\bar{a}}, \tau_b, \tau_{\bar{c}} + \beta, 0). Kubo-Martin-Schwinger (KMS) boundary conditions =========================================================== The boundary conditions in imaginary time for the Green's functions are generated by the commutation relation :math:`[a, \bar{b}]_{-\xi} = a\bar{b} - \xi \bar{b}a = \delta_{ab}`, where :math:`\xi = \pm 1` for bosons and fermions respectively .. math:: G_{a\bar{b}}(0^+) = -\langle \mathcal{T} a(0^+) \bar{b}(0) \rangle = -\langle a \bar{b} \rangle, \\ G_{a\bar{b}}(0^-) = -\langle \mathcal{T} a(0^-) \bar{b}(0) \rangle = - \xi \langle \bar{b} a \rangle, so that the boundary condition at :math:`\tau = 0^\pm` is .. math:: G_{a\bar{b}}(0^+) - G_{a\bar{b}}(0^-) = -\langle a \bar{b} - \xi \bar{b} a \rangle = -\langle [a, \bar{b}]_{-\xi} \rangle = -\delta_{ab}. Using the periodicity relation :math:`G_{a\bar{b}}(0^-) = \xi G_{a\bar{b}}(\beta^-)` we finally arrive at the boundary condition restricted to :math:`\beta > \tau > 0` .. math:: G_{a\bar{b}}(0^+) - \xi G_{a\bar{b}}(\beta^-) = - \delta_{ab}. .. note:: The anomalous Green's functions has the simpler boundary condition .. math:: G_{ab}(0^+) - \xi G_{ab}(\beta^-) = 0 \\ G_{\bar{a}\bar{b}}(0^+) - \xi G_{\bar{a}\bar{b}}(\beta^-) = 0 since :math:`[a, b]_{-\xi} = 0` and :math:`[\bar{a}, \bar{b}]_{-\xi} = 0`. Generalization to two-particle Green's functions ------------------------------------------------ For the two-particle Green's function the KMS boundary conditions generalize to relations incorporating the single particle Green's function. .. math:: G^{(2)}_{\bar{a}b\bar{c}d}(0^+,\tau_b, \tau_{\bar{c}}) - \xi G^{(2)}_{\bar{a}b\bar{c}d}(\beta^-,\tau_b, \tau_{\bar{c}}) = \xi \delta_{ad} G_{b\bar{c}}(\tau_b - \tau_{\bar{c}}) \\ G^{(2)}_{\bar{a}b\bar{c}d}(\tau_{\bar{a}}, \tau_b, 0^+) - \xi G^{(2)}_{\bar{a}b\bar{c}d}(\tau_{\bar{a}}, \tau_b, \beta^-) = \delta_{cd} G_{b\bar{a}}(\tau_b - \tau_{\bar{a}}) \\ G^{(2)}_{\bar{a}b\bar{c}d}(\tau_{\bar{a}}, 0^+, \tau_{\bar{c}}) - \xi G^{(2)}_{\bar{a}b\bar{c}d}(\tau_{\bar{a}}, \beta^-, \tau_{\bar{c}}) = 0 Thus the discontinuities at :math:`\tau_{\bar{a}}=0` and :math:`\tau_{\bar{c}}=0` are non-trivial and given by the single-particle Green's function. The two additional discontinuities in :math:`\tau_{\bar{a}}, \tau_b, \tau_{\bar{c}} \in [\beta, 0]` are the three equal time planes :math:`\tau_{\bar{a}} = \tau_b`, :math:`\tau_b = \tau_{\bar{c}}`, and :math:`\tau_{\bar{a}} = \tau_{\bar{c}}`. .. math:: G^{(2)}_{\bar{a}b\bar{c}d}(\tau^+, \tau^-, \tau_{\bar{c}}) - G^{(2)}_{\bar{a}b\bar{c}d}(\tau^-, \tau^+, \tau_{\bar{c}}) = -\delta_{bc} G_{d\bar{a}}(\beta - \tau_{\bar{a}}) \\ G^{(2)}_{\bar{a}b\bar{c}d}(\tau_{\bar{a}}, \tau^+, \tau^-) - G^{(2)}_{\bar{a}b\bar{c}d}(\tau_{\bar{a}}, \tau^-, \tau^+) = - \delta_{bc} G_{d\bar{a}}( \beta - \tau_{\bar{a}} ) \\ G^{(2)}_{\bar{a}b\bar{c}d}(\tau^+, \tau_b, \tau^-) - G^{(2)}_{\bar{a}b\bar{c}d}(\tau^-, \tau_b, \tau^+) = 0