Source code for pytriqs.sumk.sumk_discrete


################################################################################
#
# TRIQS: a Toolbox for Research in Interacting Quantum Systems
#
# Copyright (C) 2011 by M. Ferrero, O. Parcollet
#
# TRIQS is free software: you can redistribute it and/or modify it under the
# terms of the GNU General Public License as published by the Free Software
# Foundation, either version 3 of the License, or (at your option) any later
# version.
#
# TRIQS is distributed in the hope that it will be useful, but WITHOUT ANY
# WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
# FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
# details.
#
# You should have received a copy of the GNU General Public License along with
# TRIQS. If not, see <http://www.gnu.org/licenses/>.
#
################################################################################

from pytriqs.gf import *
import pytriqs.utility.mpi as mpi
from itertools import *
import inspect
import copy,numpy

class SumkDiscrete:
    """
      INTERNAL USE
      The function to compute \[ G \leftarrow \sum_k (\omega + \mu - eps_k - Sigma(k,\omega))^{-1} \]
      for GF functions with blocks of the size of the matrix eps_k with a discrete sum.
      The class contains the discretized hoppings and points in the arrays
      hopping, bz_points,bz_weights,mu_pattern,overlap (IF non orthogonal)
      It can also generate a grid (ComputeGrid) for a regular grid or a Gauss-Legendre sum.
    """
    def __init__ (self, dim, gf_struct, orthogonal_basis = True ):
	"""
	Just constructs the arrays, but without initializing them
	- dim is the dimension
	- gf_struct: Indices of the Green function
	- orthogonal_basis: True by default
	"""
        self.__GFBLOC_Structure = copy.deepcopy(gf_struct)
        self.orthogonal_basis,self.dim = orthogonal_basis,dim

   #-------------------------------------------------------------

    def resize_arrays (self, nk):
	"""
	Just constructs the arrays, but without initializing them
	- nk: total number of k points
	"""
        # constructs the arrays.
        no = len(self.__GFBLOC_Structure)
        self.hopping    = numpy.zeros([nk,no,no],numpy.complex_)   # t(k_index,a,b)
        self.bz_points  = numpy.zeros([nk,self.dim],numpy.float_)      # k(k_index,:)
        self.bz_weights = numpy.ones([nk],numpy.float_)/ float(nk) # w(k_kindex) ,  default normalisation
        self.mu_pattern  =  numpy.identity(no,numpy.complex_) if self.orthogonal_basis else numpy.zeros([no,no,nk],numpy.complex_)
        self.overlap = numpy.array(self.mu_pattern, copy=True)

   #-------------------------------------------------------------

    def __get_GFBloc_Structure(self):
        """Returns the ONLY block indices accepted for the G and Sigma argument of the
        SumK function"""
        return self.__GFBLOC_Structure

    GFBlocIndices = property(__get_GFBloc_Structure)

    #-------------------------------------------------------------

    def __call__ (self, Sigma, mu=0, eta=0, field=None, epsilon_hat=None, result=None, selected_blocks=()):
	"""
	- Computes:
	   result <- \[ \sum_k (\omega + \mu - field - t(k) - Sigma(k,\omega)) \]
           if result is None, it returns a new GF with the results.
           otherwise, result must be a GF, in which the calculation is done, and which is then returned.
           (this allows chain calculation: SK(mu = mu,Sigma = Sigma, result = G).total_density()
           which computes the sumK into G,  and returns the density of G.

        - Sigma can be a X, or a function k-> X or a function k,eps ->X where:
	    - k is expected to be a 1d-numpy array of size self.dim of float,
	      containing the k vector in the basis of the RBZ  (i.e.  -0.5< k_i <0.5)
            - eps is t(k)
	    - X is anything such that X[BlockName] can be added/subtracted to a GFBloc for BlockName in selected_blocks.
	      e.g. X can be a BlockGf(with at least the selected_blocks), or a dictionnary Blockname -> array
	      if the array has the same dimension as the GF blocks (for example to add a static Sigma).

        - field: Any k independant object to be added to the GF

        - epsilon_hat: a function of eps_k returning a matrix, the dimensions of Sigma

        - selected_blocks: The calculation is done with the SAME t(k) for all blocks. If this list is not None
	  only the blocks in this list are calculated.
	  e.g. G and Sigma have block indices 'up' and 'down'.
	       if selected_blocks ==None: 'up' and 'down' are calculated
	       if selected_blocks == ['up']: only 'up' is calculated. 'down' is 0.


        """

        assert selected_blocks == (), "selected_blocks not supported for now"
            #S = Sigma.view_selected_blocks(selected_blocks) if selected_blocks else Sigma
            #Gres = result if result else Sigma.copy()
            #G = Gres.view_selected_blocks(selected_blocks) if selected_blocks else Gres

        # check Sigma
        # case 1) Sigma is a BlockGf
        if isinstance(Sigma, BlockGf):
            model = Sigma
            Sigma_fnt = False
        # case 2) Sigma is a function returning a BlockGf
        else:
            assert callable(Sigma), "If Sigma is not a BlockGf it must be a function"
            Sigma_Nargs = len(inspect.getargspec(Sigma)[0])
            assert Sigma_Nargs <= 2, "Sigma must be a function of k or of k and epsilon"
            if Sigma_Nargs == 1:
                model = Sigma(self.bz_points[0])
            elif Sigma_Nargs == 2:
                model = Sigma(self.bz_points[0], self.hopping[0])
            Sigma_fnt = True

        G = result if result else model.copy()
        assert isinstance(G,BlockGf), "G must be a BlockGf"

        # check input
        assert self.orthogonal_basis, "Local_G: must be orthogonal. non ortho cases not checked."
        assert len(list(set([g.target_shape[0] for i,g in G]))) == 1
        assert self.bz_weights.shape[0] == self.n_kpts(), "Internal Error"
        no = list(set([g.target_shape[0] for i,g in G]))[0]

        # Initialize
        G.zero()
        tmp,tmp2 = G.copy(),G.copy()
        mupat = mu * numpy.identity(no, numpy.complex_)
        tmp << iOmega_n
        if field != None: tmp -= field
        if not Sigma_fnt: tmp -= Sigma  # substract Sigma once for all

        # Loop on k points...
        for w, k, eps_k in izip(*[mpi.slice_array(A) for A in [self.bz_weights, self.bz_points, self.hopping]]):

            eps_hat = epsilon_hat(eps_k) if epsilon_hat else eps_k
            tmp2 << tmp
            tmp2 -= tmp2.n_blocks * [eps_hat - mupat]

            if Sigma_fnt:
                if Sigma_Nargs == 1: tmp2 -= Sigma(k)
                elif Sigma_Nargs == 2: tmp2 -= Sigma(k,eps_k)

            tmp2.invert()
            tmp2 *= w
            G += tmp2

        G << mpi.all_reduce(mpi.world,G,lambda x,y: x+y)
        mpi.barrier()

        return G

    #-------------------------------------------------------------

    def n_kpts(self):
	""" Returns the number of k points"""
	return self.bz_points.shape[0]