Source code for triqs_Nevanlinna.solver


import numpy as np
import scipy.optimize as opt
from .solver_core import SolverCore

[docs] class Solver(SolverCore):
[docs] def __init__(self, kernel='NEVANLINNA', precision=100): SolverCore.__init__(self, kernel=kernel, precision=precision)
[docs] def optimize(self, grid, eta, target, nk=15, maxiter=1000, gtol=1e-3, verbose = False): def get_f_k(nk, z): ''' Compute Hardy functions basis :param nk: basis dimension :param z: real frequency with broadening :return: Basis of nk Hardy function ''' f_k = np.zeros([nk, z.shape[0]], dtype=np.complex128) # Mobius transformation zz = (z - 1.j)/(z + 1.j) prefactor = (1.0-zz)/np.sqrt(np.pi) for k in range(nk): f_k[k, :] = prefactor * (zz ** k) return f_k def update_theta(x, f_k, theta, nk): akr, aki, bkr, bki = np.split(x.reshape(self.size, 4*nk), 4, axis=1) ak = akr + 1.j*aki bk = bkr + 1.j*bki nk = f_k.shape[0] for i in range(self.size): theta[:, i, i] = np.dot(ak[i * nk: (i+1)*nk], f_k) + np.dot(bk[i * nk: (i+1)*nk], np.conj(f_k)) return theta z = np.array([w + eta*1.j for w in grid.values()]) # Hardy basis functions f_k = get_f_k(nk, z) theta = np.zeros([len(grid), self.size, self.size], dtype=np.complex128) # Initial values for Basis coefficients ak = np.zeros([self.size, nk], dtype=np.complex128) bk = np.zeros([self.size, nk], dtype=np.complex128) def Nevan (x): update_theta(x, f_k, theta, nk) Gw = self.evaluate(grid, eta, theta) return target(Gw) res = opt.minimize(Nevan, x0=np.concatenate((ak.real, ak.imag, bk.real, bk.imag)).flatten() , method = "CG", options={'maxiter': maxiter, 'gtol': gtol}) update_theta(res.x, f_k, theta, nk) if verbose: print(res.message) print(f'The optimizer performed {res.nit} functions evaluations.') return self.evaluate(grid, eta, theta)