triqs_ctseg::evaluate_3w_vertexΒΆ
#include <triqs_ctseg.hpp>
Synopsis
void evaluate_3w_vertex (block_gf<triqs::gfs::imfreq> const & gw,block_gf<triqs::gfs::imfreq> const & fw,gf_3w_container_t const & g3w,gf_3w_container_t const & f3w,bool measure_g3w,bool measure_f3w,std::string fname)Evaluation of the 4-leg vertex for the 4-point correlation function
- If one or two of the three-frequency correlation functions have been measured
- and the parameter
evaluate_vertex
is set totrue
, the following vertex function is computed at the end of the simulation:
\[\gamma_{\sigma\sigma'}(i\omega,i\omega',i\nu) =
\frac{G^{2,\text{con}}_{\sigma\sigma'}(i\omega,i\omega',i\nu)}{G_\sigma(i\omega)G_\sigma(i\omega+i\nu)G_\sigma'(i\omega'+i\nu)G_\sigma'(i\omega')}\]
- Depending on which two-frequency correlation functions have been measured, the
- connected part is computed in either of the following ways:
\[G^{2,\text{con}}_{\sigma}(i\omega,i\omega',i\nu) =
G^{2}_{\sigma\sigma'}(i\omega,i\omega',i\nu) -
G^{2,\text{disc}}_{\sigma\sigma'}(i\omega,i\omega',i\nu)\]
\[G^{2,\text{con}}_{\sigma}(i\omega,i\omega',i\nu) = G_\sigma(i\omega)
F_{\sigma\sigma'}^{2}(i\omega,i\omega',i\nu)-F_\sigma(i\omega)
G_{\sigma\sigma'}^{2}(i\omega,i\omega',i\nu)\]
\[G^{2,\text{con}}_{\sigma}(i\omega,i\omega',i\nu) = \Big[G_\sigma(i\omega)
F_{\sigma\sigma'}^{2}(i\omega,i\omega',i\nu)-F_\sigma(i\omega)
G_{\sigma}^{2,\text{disc}}(i\omega,i\omega',i\nu)\Big]/[1+F_\sigma(i\omega)].\]
The disconnected part of the correlation function has been defined as
\[G^{2,\text{disc}}_{\sigma\sigma'}(i\omega,i\omega',i\nu) = \beta
G_{\sigma}(i\omega)G_\sigma'(i\omega')\delta_{\nu}-\beta G_\sigma(i\omega)
G_\sigma(i\omega+i\nu)\delta_{\omega,\omega'}\delta_{\sigma\sigma'}.\]