Full charge self consistency

Wien2k + dmftproj

Warning

Before using this tool, you should be familiar with the band-structure package Wien2k, since the calculation is controlled by the Wien2k scripts! Be sure that you also understand how dmftproj is used to construct the Wannier functions. For this step, see either sections Orbital construction and conversion, or the extensive dmftproj manual.

In order to do charge self-consistent calculations, we have to tell the band structure program about the changes in the charge density due to correlation effects. In the following, we discuss how to use the TRIQS tools in combination with the Wien2k program.

We can use the DMFT script as introduced in section Single-shot DFT+DMFT, with just a few simple modifications. First, in order to be compatible with the Wien2k standards, the DMFT script has to be named case.py, where case is the place holder name of the Wien2k calculation, see the section Orbital construction and conversion for details. We can then set the variable dft_filename dynamically:

import os
dft_filename = os.getcwd().rpartition('/')[2]

This sets the dft_filename to the name of the current directory. The remaining part of the script is identical to that for one-shot calculations. Only at the very end we have to calculate the modified charge density, and store it in a format such that Wien2k can read it. Therefore, after the DMFT loop that we saw in the previous section, we symmetrise the self energy, and recalculate the impurity Green function:

SK.symm_deg_gf(S.Sigma,orb=0)
S.G_iw << inverse(S.G0_iw) - S.Sigma_iw
S.G_iw.invert()

These steps are not necessary, but can help to reduce fluctuations in the total energy. Now we calculate the modified charge density:

# find exact chemical potential
SK.set_Sigma([ S.Sigma_iw ])
chemical_potential = SK.calc_mu( precision = 0.000001 )
dN, d = SK.calc_density_correction(filename = dft_filename+'.qdmft')
SK.save(['chemical_potential','dc_imp','dc_energ'])

First we find the chemical potential with high precision, and after that the routine SK.calc_density_correction(filename) calculates the density matrix including correlation effects. The result is stored in the file dft_filename.qdmft, which is later read by the Wien2k program. The last statement saves the chemical potential into the hdf5 archive.

We need also the correlation energy, which we evaluate by the Migdal formula:

correnerg = 0.5 * (S.G_iw * S.Sigma_iw).total_density()

Other ways of calculating the correlation energy are possible, for instance a direct measurement of the expectation value of the interacting Hamiltonian. However, the Migdal formula works always, independent of the solver that is used to solve the impurity problem. From this value, we subtract the double counting energy:

correnerg -= SK.dc_energ[0]

and save this value in the file, too:

if (mpi.is_master_node()):
  f=open(dft_filename+'.qdmft','a')
  f.write("%.16f\n"%correnerg)
  f.close()

The above steps are valid for a calculation with only one correlated atom in the unit cell, the most likely case where you will apply this method. That is the reason why we give the index 0 in the list SK.dc_energ. If you have more than one correlated atom in the unit cell, but all of them are equivalent atoms, you have to multiply the correnerg by their multiplicity before writing it to the file. The multiplicity is easily found in the main input file of the Wien2k package, i.e. case.struct. In case of non-equivalent atoms, the correlation energy has to be calculated for all of them separately and summed up.

As mentioned above, the calculation is controlled by the Wien2k scripts and not by python routines. You should think of replacing the lapw2 part of the Wien2k self-consistency cycle by

lapw2 -almd
dmftproj
pytriqs case.py
lapw2 -qdmft

In other words, for the calculation of the density matrix in lapw2, we add the DMFT corrections through our python scripts. Therefore, at the command line, you start your calculation for instance by:

me@home $ run -qdmft 1 -i 10

The flag -qdmft tells the Wien2k script that the density matrix including correlation effects is to be read in from the case.qdmft file, and that you want the code to run on one computing core only. Moreover, we ask for 10 self-consistency iterations are to be done. If you run the code on a parallel machine, you can specify the number of nodes to be used:

me@home $ run -qdmft 64 -i 10

In that case, you will run on 64 computing cores. As standard setting, we use mpirun as the proper MPI execution statement. If you happen to have a different, non-standard MPI setup, you have to give the proper MPI execution statement, in the run_lapw script (see the corresponding Wien2k documentation).

In many cases it is advisable to start from a converged one-shot calculation. For practical purposes, you keep the number of DMFT loops within one DFT cycle low, or even to loops=1. If you encounter unstable convergence, you have to adjust the parameters such as the number of DMFT loops, or some mixing of the self energy to improve the convergence.

In the section DFT+DMFT tutorial: Ce with Hubbard-I approximation we will see in a detailed example how such a self-consistent calculation is performed from scratch.

Other DFT codes

The extension to other DFT codes is straight forward. As described here, one needs to implement the correlated density matrix to be used for the calculation of the charge density. This implementation will of course depend on the DFT package, and might be easy to do or a quite involved project. The formalism, however, is straight forward.