Source code for triqs_dft_tools.converters.elktools.elk_converter_tools
##########################################################################
#
# TRIQS: a Toolbox for Research in Interacting Quantum Systems
#
# Copyright (C) 2019 by A. D. N. James, M. Zingl and M. Aichhorn
#
# TRIQS is free software: you can redistribute it and/or modify it under the
# terms of the GNU General Public License as published by the Free Software
# Foundation, either version 3 of the License, or (at your option) any later
# version.
#
# TRIQS is distributed in the hope that it will be useful, but WITHOUT ANY
# WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
# FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
# details.
#
# You should have received a copy of the GNU General Public License along with
# TRIQS. If not, see <http://www.gnu.org/licenses/>.
#
##########################################################################
from types import *
import numpy
import os.path
from locale import atof
[docs]
class ElkConverterTools:
"""
Conversion Tools required to help covert Elk outputs into the TRIQS format.
"""
[docs]
def rotaxang(self,rot):
"""
This routine determines the axis of rotation vector (v) and the angle of rotation (th).
If R corresponds to an improper rotation then only the proper part is used and the determinant
is set to -1. The rotation convention follows the "right-hand rule". See Elk's rotaxang
routine.
"""
eps=1E-8
v=numpy.zeros([3], float)
# find the determinant
det=numpy.linalg.det(rot)
if (abs(det-1.0)<eps):
det=1.0
elif (abs(det+1.0)<eps):
det=-1.0
else:
raise "sym_converter : Invalid rotation matrix!"
# proper rotation matrix
rotp=det*rot
v[0]=(rotp[1,2]-rotp[2,1])/2.0
v[1]=(rotp[2,0]-rotp[0,2])/2.0
v[2]=(rotp[0,1]-rotp[1,0])/2.0
t1=numpy.sqrt(numpy.dot(v,v))
t2=(rotp[0,0]+rotp[1,1]+rotp[2,2]-1.0)/2.0
if (abs(abs(t2)-1.0)>eps):
# theta not equal to 0 or pi
th=-numpy.arctan2(t1,t2)
v[:]=v[:]/t1
else:
# special case of sin(th)=0
if(t2>eps):
# zero angle: axis arbitrary
th=0.0
v[:]=1.0/numpy.sqrt(3.0)
else:
# rotation by pi
th=numpy.pi
if((rotp[0,0]>=rotp[1,1])&(rotp[0,0]>=rotp[2,2])):
if(rotp[0,0]<(-1.0+eps)):
mpi.report(rotp[0,0],-1.0+eps)
raise "sym_converter : Invalid rotation matrix!"
v[0]=numpy.sqrt(abs(rotp[0,0]+1.0)/2.0)
v[1]=(rotp[1,0]+rotp[0,1])/(4.0*v[0])
v[2]=(rotp[2,0]+rotp[0,2])/(4.0*v[0])
elif((rotp[1,1]>=rotp[0,0])&(rotp[1,1]>=rotp[2,2])):
if(rotp[1,1]<(-1.0+eps)):
mpi.report(rotp[1,1],-1.0+eps)
raise "sym_converter : Invalid rotation matrix!"
v[1]=numpy.sqrt(abs(rotp[1,1]+1.0)/2.0)
v[2]=(rotp[2,1]+rotp[1,2])/(4.0*v[1])
v[0]=(rotp[0,1]+rotp[1,0])/(4.0*v[1])
else:
if(rotp[2,2]<(-1.0+eps)):
mpi.report(rotp[2,2],-1.0+eps)
raise "sym_converter : Invalid rotation matrix!"
v[2]=numpy.sqrt(abs(rotp[2,2]+1.0)/2.0)
v[0]=(rotp[0,2]+rotp[2,0])/(4.0*v[2])
v[1]=(rotp[1,2]+rotp[2,1])/(4.0*v[2])
# return -theta and v. -theta is returned as TRIQS does not rotate
# the observable (such as the density matrix) which is done in Elk
return v,-th
[docs]
def axangsu2(self,v,th):
"""
Calculate the rotation SU(2) matrix - see Elk's axangsu2 routine.
"""
su2=numpy.zeros([2,2], complex)
t1=numpy.sqrt(numpy.dot(v,v))
if(t1<1E-8):
raise "sym_converter : zero length axis vector!"
# normalise the vector
t1=1.0/t1
x=v[0]*t1; y=v[1]*t1; z=v[2]*t1
#calculate the SU(2) matrix
cs=numpy.cos(0.5*th)
sn=numpy.sin(0.5*th)
su2[0,0]=cs-z*sn*1j
su2[0,1]=-y*sn-x*sn*1j
su2[1,0]=y*sn-x*sn*1j
su2[1,1]=cs+z*sn*1j
#return the SU(2) matrix
return su2
[docs]
def v3frac(self,v,eps):
"""
This finds the fractional part of 3-vector v components. This uses the
same method as in Elk (version 6.2.8) r3fac subroutine.
"""
v[0]=v[0]-numpy.floor(v[0])
if(v[0] < 0): v[0]+=1
if((1-v[0]) < eps): v[0]=0
if(v[0] < eps): v[0]=0
v[1]=v[1]-numpy.floor(v[1])
if(v[1] < 0): v[1]+=1
if((1-v[1]) < eps): v[1]=0
if(v[1] < eps): v[1]=0
v[2]=v[2]-numpy.floor(v[2])
if(v[2] < 0): v[2]+=1
if((1-v[2]) < eps): v[2]=0
if(v[2] < eps): v[2]=0
return v
[docs]
def gen_perm(self,nsym,ns,na,natmtot,symmat,tr,atpos,epslat=1E-6):
"""
Generate the atom permutations per symmetry.
"""
perm=[]
iea=[]
for isym in range(nsym):
iea.append(numpy.zeros([natmtot,ns], int))
#loop over species
for js in range(ns):
#loop over species atoms
v=numpy.zeros([3,na[js]], float)
v2=numpy.zeros(3, float)
for ia in range(na[js]):
v[:,ia]=self.v3frac(atpos[js][ia][0:3],epslat)
for ia in range(na[js]):
v2[:]=numpy.matmul(symmat[isym][:,:],(atpos[js][ia][0:3]+tr[isym]))
v2[:]=self.v3frac(v2,epslat)
for ja in range(na[js]):
t1=sum(abs(v[:,ja]-v2[:])) #check
if(t1 < epslat):
iea[isym][ja,js]=ia
break
#put iea into perm format
for isym in range(nsym):
perm.append([])
ja=0
prv_atms=0
for js in range(ns):
for ia in range(na[js]):
perm[isym].append(iea[isym][ia,js]+prv_atms+1)
ja+=1
prv_atms+=na[js]
#output perm
return perm
[docs]
def symlat_to_complex_harmonics(self,nsym,n_shells,symlat,shells):
"""
This calculates the Elk (crystal) symmetries in complex spherical harmonics
This follows the methodology used in Elk's rotzflm, ylmrot and ylmroty routines.
"""
#need SciPy routines to get Euler angles - need version 1.4+
#from scipy.spatial.transform import Rotation as R
symmat=[]
rot=numpy.identity(3, float)
angi=numpy.zeros(3, float)
#loop over symmetries
for isym in range(nsym):
symmat.append([])
for ish in range(n_shells):
l=shells[ish]['l']
symmat[isym].append(numpy.zeros([2*l+1, 2*l+1], complex))
#get determinant
det=numpy.linalg.det(symlat[isym])
p=1
#p is -1 for improper symmetries
if(det<0.0): p=-1
rot[:,:]=p*symlat[isym][:,:]
#r=R.from_matrix(rot)
#get the y-convention Euler angles as used by Elk.
#ang=r.as_euler('zyz')
ang=self.zyz_euler(rot)
#Elk uses inverse rotations, i.e. the function is being rotated, not the spherical harmonics
#TRIQS rotates the spherical harmonics instead
angi[0]=ang[0]
angi[1]=ang[1]
angi[2]=ang[2]
#calculate the symmetry in the complex spherical harmonic basis.
d = self.ylmrot(p,angi,l)
symmat[isym][ish][:,:] = d[:,:]
#return the complex spherical harmonic
return symmat
[docs]
def zyz_euler(self,rot):
"""
This calculates the Euler angles of matrix rot in the y-convention.
See Elk's roteuler routine.
This will be made redundent when TRIQS uses scipy version 1.4+
"""
eps=1E-8
pi=numpy.pi
ang=numpy.zeros(3, float)
#get the Euler angles
if((abs(rot[2,0])>eps) or (abs(rot[2,1])>eps)):
ang[0]=numpy.arctan2(rot[2,1],rot[2,0])
if(abs(rot[2,0])>abs(rot[2,1])):
ang[1]=numpy.arctan2(rot[2,0]/numpy.cos(ang[0]),rot[2,2])
else:
ang[1]=numpy.arctan2(rot[2,1]/numpy.sin(ang[0]),rot[2,2])
ang[2]=numpy.arctan2(rot[1,2],-rot[0,2])
else:
ang[0]=numpy.arctan2(rot[0,1],rot[0,0])
if(rot[2,2]>0.0):
ang[1]=0.0
ang[2]=0.0
else:
ang[1]=pi
ang[2]=pi
#return Euler angles
return ang
[docs]
def ylmrot(self,p,angi,l):
"""
calculates the rotation matrix in complex spherical harmonics for l.
THIS HAS ONLY BEEN TESTED FOR l=2.
"""
d=numpy.identity(2*l+1, complex)
# generate the rotation matrix about the y-axis
dy=self.ylmroty(angi[1],l)
# apply inversion to odd l values if required
if(p==-1):
if(l % 2.0 != 0):
dy*=-1
# rotation by alpha and gamma
for m1 in range(-l,l+1,1):
lm1=l+m1
for m2 in range(-l,l+1,1):
lm2=l+m2
t1=-m1*angi[0]-m2*angi[2]
d[lm1,lm2]=dy[lm1,lm2]*(numpy.cos(t1)+1j*numpy.sin(t1))
#return the rotation matrix
return d
[docs]
def ylmroty(self,beta,l):
"""
returns the rotation matrix around the y-axis with angle beta.
This uses the same real matrix formual as in Elk - see Elk's manual for ylmroty description
"""
#import the factorial function - needed for later versions of scipy (needs testing)
from scipy import special as spec
#calculates the rotation matrix in complex spherical harmonics for l
dy=numpy.identity(2*l+1, float)
#sine and cosine of beta
cb=numpy.cos(beta/2.0)
sb=numpy.sin(beta/2.0)
# generate the rotaion operator for m-components of input l
for m1 in range(-l,l+1,1):
for m2 in range(-l,l+1,1):
sm=0.0
minlm=numpy.amin([l+m1, l-m2]) + 1
for k in range(minlm):
if(((l+m1-k)>=0) and ((l-m2-k)>=0) and ((m2-m1+k)>=0)):
j=2*(l-k)+m1-m2
if(j==0):
t1=1.0
else:
t1=cb**j
j=2*k+m2-m1
if(j!=0):
t1=t1*sb**j
t2=t1/(spec.factorial(k)*spec.factorial(l+m1-k)*spec.factorial(l-m2-k)*spec.factorial(m2-m1+k))
if(k % 2.0 != 0):
t2=-t2
sm+=t2
t1=numpy.sqrt(spec.factorial(l+m1)*spec.factorial(l-m1)*spec.factorial(l+m2)*spec.factorial(l-m2))
dy[m1+l,m2+l]=t1*sm
#return y-rotation matrix
return dy
[docs]
def plotpt3d(self,n_k,vkl,n_symm,symlat,grid3d,ngrid):
import triqs.utility.mpi as mpi
#import time
#st = time.time()
#default vector tolerance used in Elk. This should not be altered.
epslat=1E-6
tol=int(numpy.log10(1/epslat))
b = numpy.zeros([3,3], float)
b = grid3d[1:4,:] - grid3d[0,:]
nk = ngrid[0]*ngrid[1]*ngrid[2]
BZvkl = numpy.zeros([nk,3], float)
BZvkl[:,:] = None
#array which maps the new vkl to the symmetrically equivalent interface vkl
iknr = numpy.zeros([nk], int)
nk_ = 0
vklIBZ = [self.v3frac(vkl[ik,:],epslat) for ik in range(n_k)]
vklIBZ = numpy.array(vklIBZ)
#generate mesh grid
i0, i1, i2 = numpy.meshgrid(numpy.arange(ngrid[0]), numpy.arange(ngrid[1]),
numpy.arange(ngrid[2]), indexing='ij')
#convert to floats
t0 = i0.astype(float)/ngrid[0]
t1 = i1.astype(float)/ngrid[1]
t2 = i2.astype(float)/ngrid[2]
#Calculate Brillouin zone lattice vectors
BZvkl[:, 0] = (t0*b[0,0]+t1*b[1, 0]+t2*b[2, 0]+grid3d[0, 0]).flatten()
BZvkl[:, 1] = (t0*b[0,1]+t1*b[1, 1]+t2*b[2, 1]+grid3d[0, 1]).flatten()
BZvkl[:, 2] = (t0*b[0,2]+t1*b[1, 2]+t2*b[2, 2]+grid3d[0, 2]).flatten()
#check k-point has equivalent point dft-interfaced k-point list (this is a bottle neck for performance)
for ik in range(nk):
br = None
v1 = self.v3frac(BZvkl[ik,:], epslat)
#see if v1 is symmetrically equivalent to a vector in IBZvkl
for isym in range(n_symm):
v_symm=numpy.matmul(symlat[isym][:,:].transpose(),v1)
v_symm=self.v3frac(v_symm,epslat)
if v_symm.round(tol).tolist() in vklIBZ.round(tol).tolist():
iknr[ik] = vkl.round(tol).tolist().index(v_symm.round(tol).tolist())
#if identity symmetry operation was used, this v1 must be in the IBZ vector set
if numpy.allclose(symlat[isym][:,:],numpy.eye(3)):
nk_+=1
br = 1
break
if br == 1: continue
#if v1 is not symmetrically equivalent, then wrong input mesh.
mpi.report('No identity symmetry operator or symmetrically equivalent vector in interface vkl set')
assert 0, "input grid does not generate interfaced reciprocal vectors"
#check that all the vectors from the interface are in this list of vectors
if(nk_!=n_k):
mpi.report('Incorrect number of irreducible vectors with respect to vkl ')
mpi.report('%s!=%s'%(nk_,n_k))
assert 0, "input grid does not generate interfaced reciprocal vectors"
#et = time.time()
#mpi.report(et-st,nk)
return BZvkl, iknr, nk
[docs]
def bzfoldout(self,n_k,vkl,n_symm,symlat):
#import triqs.utility.mpi as mpi
epslat=1E-6
tol=int(numpy.log10(1/epslat))
#new temporary arrays for expanding irreducible Brillouin zone
iknr = numpy.arange(n_k)
BZvkl = vkl.copy()
vkl2 = numpy.zeros([n_symm,n_k,3], float)
iknr2 = numpy.zeros([n_symm,n_k], int)
vkl2[0,:,:] = vkl[:,:].copy()
iknr2[0,:] = iknr[:].copy()
#expand irreducible Brillouin zone
for ik in range(n_k):
for isym in range(n_symm):
#find point in BZ by symmetry operation
v=numpy.matmul(symlat[isym][:,:].transpose(),vkl[ik,:])
#alter temporary arrays
vkl2[isym,ik,:] = v[:]
iknr2[isym,ik] = ik
#flatten arrays
BZvkl = vkl2.reshape(n_k*n_symm,3)
iknr = iknr2.reshape(n_k*n_symm)
#remove duplicates with eplats tolerance
[BZvkl,ind]=numpy.unique(BZvkl.round(tol),return_index=True,axis=0)
iknr=iknr[ind]
#new number of k-points
nk=BZvkl.shape[0]
#sort the indices for output in decending order
iksrt=numpy.lexsort(([BZvkl[:,i] for i in range(0,BZvkl.shape[1], 1)]))
#rearrange the vkc and iknr arrays
BZvkl=BZvkl[iksrt]
iknr=iknr[iksrt]
#return new set of lattice vectors, number of vectors and index array which
#maps to original irreducible vector set.
return BZvkl, iknr, nk