TauMaxEnt
- class triqs_maxent.tau_maxent.TauMaxEnt(cov_threshold=1e-14, **kwargs)[source]
Bases:
object
Perform MaxEnt with a \(G(\tau)\) kernel.
The methods and properties of
MaxEntLoop
are, in general, shadowed byTauMaxEnt
, i.e., they can be used in aTauMaxEnt
object as well.- Parameters:
- cov_thresholdfloat
when setting a covariance using
TauMaxEnt.set_cov()
, this threshold is used to ignore small eigenvalues- **kwargs
are passed on to
MaxEntLoop
- Attributes:
- maxent_loop
- tau
Methods
set_G_iw
(G_iw[, np_tau])Set \(G(\tau)\) from TRIQS GfImFreq
set_G_tau
(G_tau[, re, tau_new])Set \(G(\tau)\) from TRIQS GfImTime
set_G_tau_data
(tau, G_tau)Set \(G(\tau)\) from array.
set_G_tau_file
(filename[, tau_col, G_col, ...])Set \(G(\tau)\) from data file.
set_cov
(cov)Set covariance matrix from array.
set_cov_file
(filename)Set covariance matrix from data file.
set_error
(error)Set error from array.
get_tau
set_tau
- set_G_iw(G_iw, np_tau=-1, **kwargs)[source]
Set \(G(\tau)\) from TRIQS GfImFreq
- Parameters:
- G_iwGfImFreq
The data for the analytic continuation. A Fourier transform is performed
- np_tauint
Number of target tau points (must be >=
(3*len(G_iw.mesh)+1
or -1; then(3*len(G_iw.mesh)+1)
is chosen)- **kwargs
arguments supplied to
set_G_tau()
- set_G_tau(G_tau, re=True, tau_new=None)[source]
Set \(G(\tau)\) from TRIQS GfImTime
- Parameters:
- G_tauGfImTime
The data for the analytic continuation. For Green functions with more than 1x1 matrix structure, choose a particular matrix element.
- relogical
If True, the real part of the data is continued, else the imaginary part.
- tau_newarray
G_tau is interpolated on a new tau grid as given by tau_new. If not given, the original tau grid of G_tau is used.
- set_G_tau_data(tau, G_tau)[source]
Set \(G(\tau)\) from array.
- Parameters:
- tauarray
tau-grid
- G_tauarray
The data for the analytic continuation.
- set_G_tau_file(filename, tau_col=0, G_col=1, err_col=None)[source]
Set \(G(\tau)\) from data file.
- Parameters:
- filenamestr
the name of the file to load. The first column (see
tau_col
) is the \(\tau\)-grid, the second column (seeG_col
) is the \(G(\tau)\) data.- tau_colint
the 0-based column number of the \(\tau\)-grid
- G_colint
the 0-based column number of the \(G(\tau)\)-data
- err_colint
the 0-based column number of the error-data or None if the error is not supplied via a file
- set_cov(cov)[source]
Set covariance matrix from array.
The covariance matrix is diagonalized and the analytic continuation problem is rotated into the eigenbasis. Thus, diagonal errors can be used. The errors are the square roots of the eigenvalues of the covariance matrix. Due to numerics, small eigenvalues have to be ignored; this is done according to the parameter
cov_threshold
.- Parameters:
- covarray
covariance matrix, \(N_\tau \times N_\tau\). It has to be symmetric.
- set_cov_file(filename)[source]
Set covariance matrix from data file.
See
TauMaxEnt.set_cov()
for more info.- Parameters:
- filenamestr
the name of the file to load.