triqs_modest.hamiltonians.U_matrix_in_spherical_basis
- triqs_modest.hamiltonians.U_matrix_in_spherical_basis()
Dispatched C++ function(s).
[1] (l: int, U_int: float, J_hund: float) -> ndarray[float, 4]
Construct a four-index Coulomb tensor in the basis of spherical harmonics.
We typically construct the four-index Coulomb tensor in the basis of spherical harmonics,
\[U_{m_{1}m_{2}m_{3}m_{4}}^{\mathrm{spherical}} = \sum_{k=0}^{2l} F_{k} \alpha (l, k, m_{1}, m_{2}, m_{3}, m_{4}),\]where \(F_{k}\) are radial Slater integrals and \(\alpha(l, k, m_{1}, m_{2}, m_{3}, m_{4})\) denote angular Racah-Wigner numbers for a spherically symmetric interaction tensor.
- Parameters:
- lint
Angular quantum number.
- U_intfloat
Screened Hubbard interaction.
- J_hundfloat
Hund’s coupling.
- Returns:
- ndarray[float, 4]
Coulomb tensor.