triqs_modest.local_gf.gloc
- triqs_modest.local_gf.gloc()
Dispatched C++ function(s).
[1] (obe: OneBodyElementsOnGrid, mu: float, Sigma_dynamic: Block2Gf[MeshImFreq, 2], Sigma_static: ndarray[ndarray[complex, 2], 2]) -> Block2Gf[MeshImFreq, 2] [2] (obe: OneBodyElementsOnGrid, mu: float, Sigma_dynamic: Block2Gf[MeshDLRImFreq, 2], Sigma_static: ndarray[ndarray[complex, 2], 2]) -> Block2Gf[MeshDLRImFreq, 2] [3] (mesh: MeshImFreq, obe: OneBodyElementsOnGrid, mu: float) -> Block2Gf[MeshImFreq, 2] [4] (mesh: MeshDLRImFreq, obe: OneBodyElementsOnGrid, mu: float) -> Block2Gf[MeshDLRImFreq, 2] [5] (obe: OneBodyElementsTb, mu: float, Sigma_dynamic: Block2Gf[MeshImFreq, 2], Sigma_static: ndarray[ndarray[complex, 2], 2], opt: BzIntOptions) -> Block2Gf[MeshImFreq, 2] [6] (mesh: MeshImFreq, obe: OneBodyElementsTb, mu: float, opt: BzIntOptions) -> Block2Gf[MeshImFreq, 2]
[1, 2] Compute local Green’s function on a \(M \times M\) mesh.
When the one-body dispersion is defined as fixed k-grid, which is the case when working with DFT codes (e.g., VASP, Wien2k, Elk) or performing charge self-consistent calculations with any DFT code, \(H(\mathbf{k})\) is diagonal in the band basis and reduces to \(\varepsilon_{\nu}^{\sigma}(\mathbf{k})\). The local Green’s function becomes:
\[[ G_{\mathrm{loc}}^{\sigma} ]_{m m'} = \sum_{\mathbf{k}} P_{m\nu}^{\sigma}(\mathbf{k}) \Big [ (\omega + \mu - \varepsilon_{\nu}^{\sigma}(\mathbf{k}))\delta_{\nu\nu'} - [P_{m\nu}^{\sigma}]^{\dagger}\Sigma_{\mathrm{embed}} P_{m'\nu'}^{\sigma}(\mathbf{k}) \Big ]^{-1} [P_{m'\nu'}^{\sigma}]^{\dagger}.\]For performance reasons, we can avoid performing the matrix inverstion in the larger band basis (\(N_{\nu}\)) using the Woodbury formula which allows us to perform the matrix inversion in the smaller orbital basis \(N_{M}\).
[3, 4, 5, 6] Compute the local Green’s function without a self-energy.
See other overloads (gloc) for more details.
- Parameters:
- obeOneBodyElementsOnGrid
One-body elements on a fixed grid.
- mufloat
Chemical potential \(\mu\).
- Sigma_dynamicBlock2Gf[MeshImFreq, 2], Block2Gf[MeshDLRImFreq, 2]
The dynamic part of the embedded self-energy in the embedded view, \(\Sigma_{\text{dynamic}}[\alpha, \sigma]\).
- Sigma_staticndarray[ndarray[complex, 2], 2]
The static part of the embedded self-energy in the embedded view, \(\Sigma_{\text{static}}[\alpha,\sigma]\).
- meshMeshImFreq, MeshDLRImFreq
(DLR) imaginary frequency mesh.
- optBzIntOptions
Container for options related to integration of the BZ.
- Returns:
- [1]Block2Gf[MeshImFreq, 2]
\(G_{\mathrm{loc}}^{\sigma}\), the local Green’s function in the full \(\mathcal{C}\) space.
- [2]Block2Gf[MeshDLRImFreq, 2]
\(G_{\mathrm{loc}}^{\sigma}\), the local Green’s function in the full \(\mathcal{C}\) space.
- [3, 5, 6]Block2Gf[MeshImFreq, 2]
\(G_{\mathrm{loc}}^{\sigma}\), the local Green’s function.
- [4]Block2Gf[MeshDLRImFreq, 2]
\(G_{\mathrm{loc}}^{\sigma}\), the local Green’s function.