TRIQS/triqs_modest 3.3.0
Brillouin zone summation
|
Compute the local Green's function defined as: $$ [ G_{\mathrm{loc}}^{\sigma} ]_{m m'} = \sum_{\mathbf{k}} P_{m\nu}^{\sigma}(\mathbf{k}) \Big [ (\omega + \mu)\delta_{\nu\nu'} - H^{\sigma}_{\nu\nu'}(\mathbf{k}) - [P_{m\nu}^{\sigma}]^{\dagger}\Sigma_{\mathrm{embed}}P_{m'\nu'}^{\sigma}(\mathbf{k}) \Big ]^{-1} [P_{m'\nu'}^{\sigma}]^{\dagger},$$ where \(\omega\) is a frequency (either real- or Matsubra), \(\mu\) is the chemical potential, \(H(\mathbf{k})\) is the one-body Hamiltonian, \(P(\mathbf{k})\) are the projectors from the band to the orbital basis, and \(\Sigma_{\mathrm{embed}}\) is the embedded self-energy.
Functions | |
template<typename Mesh > | |
block2_gf< Mesh, matrix_valued > | triqs::modest::gloc (Mesh const &mesh, one_body_elements_tb const &obe, double mu, triqs::lattice::bz_int_options const &opt) |
Compute the local Green's function without a self-energy. | |
template<typename Mesh > | |
block2_gf< Mesh, matrix_valued > | triqs::modest::gloc (one_body_elements_tb const &obe, double mu, block2_gf< Mesh, matrix_valued > const &Sigma_dynamic, nda::array< nda::matrix< dcomplex >, 2 > const &Sigma_static, triqs::lattice::bz_int_options const &opt) |
Compute the local Green's function without a self-energy. | |
Local Green's function using a fixed k-grid | |
template<typename Mesh > | |
block2_gf< Mesh, matrix_valued > | triqs::modest::gloc (one_body_elements_on_grid const &obe, double mu, block2_gf< Mesh, matrix_valued > const &Sigma_dynamic, nda::array< nda::matrix< dcomplex >, 2 > const &Sigma_static) |
compute Gš local Green's function on Mesh(MxM) | |
template<typename Mesh > | |
block2_gf< Mesh, matrix_valued > | triqs::modest::gloc (Mesh const &mesh, one_body_elements_on_grid const &obe, double mu) |
Compute the local Green's function without a self-energy. | |
block2_gf< Mesh, matrix_valued > triqs::modest::gloc | ( | Mesh const & | mesh, |
one_body_elements_on_grid const & | obe, | ||
double | mu | ||
) |
#include <triqs_modest/gloc_fixed_grid.hpp>
Compute the local Green's function without a self-energy.
See gloc for more details.
Mesh | The mesh type |
mesh | mesh triqs::meshes::{imfreq, dlr_imfreq} |
obe | one-body elements |
mu | chemical potential |
Definition at line 146 of file gloc_fixed_grid.hpp.
block2_gf< Mesh, matrix_valued > triqs::modest::gloc | ( | Mesh const & | mesh, |
one_body_elements_tb const & | obe, | ||
double | mu, | ||
triqs::lattice::bz_int_options const & | opt | ||
) |
#include <triqs_modest/obe_tb.hpp>
Compute the local Green's function without a self-energy.
See gloc for more details.
Mesh |
mesh | The mesh on which Gloc will be computed |
obe | A one_body_elements object containing the tb_hamiltonian |
mu | Chemical potential |
opt | Container for options related integration of the BZ |
Definition at line 147 of file obe_tb.hpp.
template< typename Mesh > block2_gf< Mesh, matrix_valued > triqs::modest::gloc | ( | one_body_elements_on_grid const & | obe, |
double | mu, | ||
block2_gf< Mesh, matrix_valued > const & | Sigma_dynamic, | ||
nda::array< nda::matrix< dcomplex >, 2 > const & | Sigma_static | ||
) |
#include <triqs_modest/gloc_fixed_grid.hpp>
compute Gš local Green's function on Mesh(MxM)
Mesh | The mesh type (triqs::mesh::{dlr_imfreq,imfreq}) |
obe | one_body_elements_on_grid |
mu | chemical potential |
Sigma_dynamic | The dynamic part of the embedded self-energy in the embedded view, Sigma_dynamic[alpha, sigma]. |
Sigma_static | The static part of the embedded self-energy in the embedded view, Sigma_static[alpha,sigma] |
When the one-body dispersion is defined as fixed k-grid, which is the case when working with DFT codes (e.g., VASP, Wien2k, Elk) or performing charge self-consistent calculations with any DFT code, \(H(\mathbf{k})\) is diagonal in the band basis and reduces to \(\varepsilon_{\nu}^{\sigma}(\mathbf{k})\). The local Green's function becomes: $$ [ G_{\mathrm{loc}}^{\sigma} ]_{m m'} = \sum_{\mathbf{k}} P_{m\nu}^{\sigma}(\mathbf{k}) \Big [ (\omega + \mu - \varepsilon_{\nu}^{\sigma}(\mathbf{k}))\delta_{\nu\nu'} - [P_{m\nu}^{\sigma}]^{\dagger}\Sigma_{\mathrm{embed}}P_{m'\nu'}^{\sigma}(\mathbf{k}) \Big ]^{-1} [P_{m'\nu'}^{\sigma}]^{\dagger}.$$ For performance reasons, we can avoid performing the matrix inverstion in the larger band basis ( \(N_{\nu}\)) using the Woodbury formula which allows us to perform the matrix inversion in the smaller orbital basis \(N_{M}\).
Definition at line 92 of file gloc_fixed_grid.hpp.
block2_gf< Mesh, matrix_valued > triqs::modest::gloc | ( | one_body_elements_tb const & | obe, |
double | mu, | ||
block2_gf< Mesh, matrix_valued > const & | Sigma_dynamic, | ||
nda::array< nda::matrix< dcomplex >, 2 > const & | Sigma_static, | ||
triqs::lattice::bz_int_options const & | opt | ||
) |
#include <triqs_modest/obe_tb.hpp>
Compute the local Green's function without a self-energy.
See gloc for more details.
Mesh |
obe | A one_body_elements object containing the tb_hamiltonian |
mu | Chemical potential |
Sigma_dynamic | The dynamic part of the embedded self-energy. |
Sigma_static | The static part of the embedded self-energy. |
opt | Container for options related integration of the BZ |
Definition at line 105 of file obe_tb.hpp.