TRIQS/nda 1.3.0
Multi-dimensional array library for C++
Loading...
Searching...
No Matches
nda::idx_map< Rank, StaticExtents, StrideOrder, LayoutProp >

#include <nda/layout/idx_map.hpp>

Detailed Description

template<int Rank, uint64_t StaticExtents, uint64_t StrideOrder, layout_prop_e LayoutProp>
class nda::idx_map< Rank, StaticExtents, StrideOrder, LayoutProp >

Layout that specifies how to map multi-dimensional indices to a linear/flat index.

It stores the shape of the array, i.e. the length of each dimension, and the strides of each dimension. The stride of dimension i is the number of elements to skip in memory when the index of dimension i is incremented by one. For example:

  • To iterate over every element of a 5x5x5 array in C-order use the strides (25, 5, 1).
  • To iterate over every 2nd element of a 1D array use the stride (2).
  • To iterate over every 2nd column of a 10x10 array in Fortran-order use the strides (1, 20).
  • To iterate over every 2nd row of a 10x10 array in Fortran-order use the strides (2, 10).

The template parameters StaticExtents and StrideOrder are encoded as uint64_t. They can be decoded to a std::array<int, Rank> using the nda::decode function. The encoding limits the number of dimensions, i.e. the rank, to 16.

The static extent array specifies the length of each dimension at compile-time. A zero value means that the length in this dimension is dynamic and will be specified at runtime. Note that static lengths cannot exceed 16 (due to the encoding). For example:

  • StaticExtents = nda::encode(std::array<int, Rank>{0, 10, 0, 5}) corresponds to a 4D array with dynamic extents in dimension 0 and 2, and static extents of length 10 and 5 in dimension 1 and 3, respectively.

The stride order specifies the order in which the dimensions are stored in memory. In its array form, it can be any permutation of the integer values from 0 to Rank - 1. The slowest varying dimension is the first element of the array and the fastest varying dimension is the last element of the array. For example:

  • C-order: StrideOrder = nda::encode(std::array<int, Rank>{0, 1, ..., Rank - 2, Rank - 1}).
  • Fortran-order: StrideOrder = nda::encode(std::array<int, Rank>{Rank - 1, Rank - 2, ..., 1, 0}).

LayoutProp is an enum flag that can be used to make further compile-time guarantees about the layout of the data in memory (see nda::layout_prop_e).

Template Parameters
RankNumber of dimensions.
StaticExtentCompile-time known shape (zero if fully dynamic).
StrideOrderOrder in which the dimensions are stored in memory.
LayoutPropCompile-time guarantees about the layout of the data in memory.

Definition at line 103 of file idx_map.hpp.

Public Member Functions

 idx_map ()
 Default constructor.
 
 idx_map (idx_map &&)=default
 Default move constructor.
 
 idx_map (idx_map const &)=default
 Default copy constructor.
 
template<uint64_t SE, uint64_t SO, layout_prop_e LP>
requires (stride_order_encoded != SO)
 idx_map (idx_map< Rank, SE, SO, LP > const &)
 Construct a new map from an existing map with a different stride order.
 
template<uint64_t SE, layout_prop_e LP>
 idx_map (idx_map< Rank, SE, StrideOrder, LP > const &idxm) noexcept(false)
 Construct a new map from an existing map with different layout properties and different static extents.
 
template<layout_prop_e LP>
 idx_map (idx_map< Rank, StaticExtents, StrideOrder, LP > const &idxm) noexcept
 Construct a new map from an existing map with different layout properties.
 
template<std::integral Int = long>
 idx_map (std::array< Int, Rank > const &shape) noexcept
 Construct a new map from a given shape and with contiguous strides.
 
 idx_map (std::array< long, n_dynamic_extents > const &shape) noexcept
 Construct a new map from an array with its dynamic extents.
 
template<int R>
requires (R != Rank)
 idx_map (std::array< long, R > const &)
 Construct a new map with a shape of a different rank.
 
 idx_map (std::array< long, Rank > const &shape, std::array< long, Rank > const &strides) noexcept(!check_stride_order)
 Construct a new map from a given shape and strides.
 
bool has_positive_strides () const noexcept
 Are all strides positive?
 
bool is_contiguous () const noexcept
 Is the data contiguous in memory?
 
bool is_stride_order_valid () const
 Check if the shape and strides of the current map are compatible with its stride order.
 
bool is_strided_1d () const noexcept
 Is the data strided in memory with a constant stride?
 
std::array< long, Rank > const & lengths () const noexcept
 Get the extents of all dimensions.
 
long min_stride () const noexcept
 Get the value of the smallest stride (positive or negative).
 
template<typename... Args>
__inline__ long operator() (Args const &...args) const noexcept(true)
 Function call operator to map a given multi-dimensional index to a linear index.
 
idx_mapoperator= (idx_map &&)=default
 Default move assignment operator.
 
idx_mapoperator= (idx_map const &)=default
 Default copy assignment operator.
 
template<int R, uint64_t SE, uint64_t SO, layout_prop_e LP>
bool operator== (idx_map< R, SE, SO, LP > const &rhs) const
 Equal-to operator for two nda::idx_map objects.
 
long size () const noexcept
 Get the total number of elements.
 
template<typename... Args>
auto slice (Args const &...args) const
 Get a new nda::idx_map by taking a slice of the current one.
 
std::array< long, Rank > const & strides () const noexcept
 Get the strides of all dimensions.
 
std::array< long, Rank > to_idx (long lin_idx) const
 Calculate the multi-dimensional index from a given linear index.
 
template<uint64_t Permutation>
auto transpose () const
 Create a new map by permuting the indices/dimensions of the current map with a given permutation.
 

Static Public Member Functions

static constexpr long ce_size () noexcept
 Get the size known at compile-time.
 
static constexpr bool is_stride_order_C ()
 Is the stride order equal to C-order?
 
static constexpr bool is_stride_order_Fortran ()
 Is the stride order equal to Fortran-order?
 
template<std::integral Int>
static bool is_stride_order_valid (Int *lenptr, Int *strptr)
 Check if a given shape and strides are compatible with the stride order.
 
static constexpr int rank () noexcept
 Get the rank of the map.
 

Static Public Attributes

template<typename T >
static constexpr int argument_is_allowed_for_call = std::is_constructible_v<long, T>
 Alias template to check if type T can be used to access a single element.
 
template<typename T >
static constexpr int argument_is_allowed_for_call_or_slice
 Alias template to check if type T can be used to either access a single element or a slice of elements.
 
static constexpr layout_info_t layout_info = layout_info_t{stride_order_encoded, layout_prop}
 Compile-time information about the layout (stride order and layout properties).
 
static constexpr layout_prop_e layout_prop = LayoutProp
 Compile-time memory layout properties.
 
static constexpr std::array< int, Rank > static_extents = decode<Rank>(StaticExtents)
 Decoded static extents.
 
static constexpr uint64_t static_extents_encoded = StaticExtents
 Encoded static extents.
 
static constexpr std::array< int, Rank > stride_order = (StrideOrder == 0 ? permutations::identity<Rank>() : decode<Rank>(StrideOrder))
 Decoded stride order.
 
static constexpr uint64_t stride_order_encoded = encode(stride_order)
 Encoded stride order.
 

Static Protected Attributes

static constexpr int n_dynamic_extents
 Number of dynamic dimensions/extents.
 

Constructor & Destructor Documentation

◆ idx_map() [1/8]

template<int Rank, uint64_t StaticExtents, uint64_t StrideOrder, layout_prop_e LayoutProp>
nda::idx_map< Rank, StaticExtents, StrideOrder, LayoutProp >::idx_map ( )
inline

Default constructor.

For purely static maps, the shape is set to the static extents and the strides are assumed to be contiguous.

For all other maps, the shape is set to zero and the strides are not initialized.

Definition at line 318 of file idx_map.hpp.

◆ idx_map() [2/8]

template<int Rank, uint64_t StaticExtents, uint64_t StrideOrder, layout_prop_e LayoutProp>
template<layout_prop_e LP>
nda::idx_map< Rank, StaticExtents, StrideOrder, LayoutProp >::idx_map ( idx_map< Rank, StaticExtents, StrideOrder, LP > const & idxm)
inlinenoexcept

Construct a new map from an existing map with different layout properties.

Template Parameters
LPLayout properties of the other nda::idx_map.
Parameters
idxmOther nda::idx_map object.

Definition at line 332 of file idx_map.hpp.

◆ idx_map() [3/8]

template<int Rank, uint64_t StaticExtents, uint64_t StrideOrder, layout_prop_e LayoutProp>
template<uint64_t SE, layout_prop_e LP>
nda::idx_map< Rank, StaticExtents, StrideOrder, LayoutProp >::idx_map ( idx_map< Rank, SE, StrideOrder, LP > const & idxm)
inline

Construct a new map from an existing map with different layout properties and different static extents.

Template Parameters
SEStatic extents of the other nda::idx_map.
LPLayout properties of the other nda::idx_map.
Parameters
idxmOther nda::idx_map object.

Definition at line 355 of file idx_map.hpp.

◆ idx_map() [4/8]

template<int Rank, uint64_t StaticExtents, uint64_t StrideOrder, layout_prop_e LayoutProp>
nda::idx_map< Rank, StaticExtents, StrideOrder, LayoutProp >::idx_map ( std::array< long, Rank > const & shape,
std::array< long, Rank > const & strides )
inlinenoexcept

Construct a new map from a given shape and strides.

Parameters
shapeShape of the new map.
stridesStrides of the new map.

Definition at line 379 of file idx_map.hpp.

◆ idx_map() [5/8]

template<int Rank, uint64_t StaticExtents, uint64_t StrideOrder, layout_prop_e LayoutProp>
template<std::integral Int = long>
nda::idx_map< Rank, StaticExtents, StrideOrder, LayoutProp >::idx_map ( std::array< Int, Rank > const & shape)
inlinenoexcept

Construct a new map from a given shape and with contiguous strides.

Template Parameters
IntInteger type.
Parameters
shapeShape of the new map.

Definition at line 395 of file idx_map.hpp.

◆ idx_map() [6/8]

template<int Rank, uint64_t StaticExtents, uint64_t StrideOrder, layout_prop_e LayoutProp>
nda::idx_map< Rank, StaticExtents, StrideOrder, LayoutProp >::idx_map ( std::array< long, n_dynamic_extents > const & shape)
inlinenoexcept

Construct a new map from an array with its dynamic extents.

The missing extents are taken from the static extents, i.e. if a static extent is zero, it is replaced by the corresponding dynamic extent.

Parameters
shapestd::array with the dynamic extents only.

Definition at line 409 of file idx_map.hpp.

◆ idx_map() [7/8]

template<int Rank, uint64_t StaticExtents, uint64_t StrideOrder, layout_prop_e LayoutProp>
template<uint64_t SE, uint64_t SO, layout_prop_e LP>
requires (stride_order_encoded != SO)
nda::idx_map< Rank, StaticExtents, StrideOrder, LayoutProp >::idx_map ( idx_map< Rank, SE, SO, LP > const & )
inline

Construct a new map from an existing map with a different stride order.

Warning
This constructor is deleted.
Template Parameters
SEStatic extents of the other nda::idx_map.
SOStride order of the other nda::idx_map.
LPLayout properties of the other nda::idx_map.

Definition at line 423 of file idx_map.hpp.

◆ idx_map() [8/8]

template<int Rank, uint64_t StaticExtents, uint64_t StrideOrder, layout_prop_e LayoutProp>
template<int R>
requires (R != Rank)
nda::idx_map< Rank, StaticExtents, StrideOrder, LayoutProp >::idx_map ( std::array< long, R > const & )
inline

Construct a new map with a shape of a different rank.

Warning
This constructor is deleted.
Template Parameters
RRank of the given shape.

Definition at line 435 of file idx_map.hpp.

Member Function Documentation

◆ ce_size()

template<int Rank, uint64_t StaticExtents, uint64_t StrideOrder, layout_prop_e LayoutProp>
static constexpr long nda::idx_map< Rank, StaticExtents, StrideOrder, LayoutProp >::ce_size ( )
inlinestaticconstexprnoexcept

Get the size known at compile-time.

Returns
Zero if it has at least one dynamic dimension, otherwise the product of the static extents.

Definition at line 166 of file idx_map.hpp.

◆ has_positive_strides()

template<int Rank, uint64_t StaticExtents, uint64_t StrideOrder, layout_prop_e LayoutProp>
bool nda::idx_map< Rank, StaticExtents, StrideOrder, LayoutProp >::has_positive_strides ( ) const
inlinenodiscardnoexcept

Are all strides positive?

Returns
True if all strides are positive, false otherwise.

Definition at line 211 of file idx_map.hpp.

◆ is_contiguous()

template<int Rank, uint64_t StaticExtents, uint64_t StrideOrder, layout_prop_e LayoutProp>
bool nda::idx_map< Rank, StaticExtents, StrideOrder, LayoutProp >::is_contiguous ( ) const
inlinenodiscardnoexcept

Is the data contiguous in memory?

The data is contiguous in memory if the size of the map is equal to the number of memory locations spanned by the map, i.e. the absolute value of the product of the largest stride times the length of the corresponding dimension.

Returns
True if the data is contiguous in memory, false otherwise.

Definition at line 201 of file idx_map.hpp.

◆ is_stride_order_C()

template<int Rank, uint64_t StaticExtents, uint64_t StrideOrder, layout_prop_e LayoutProp>
static constexpr bool nda::idx_map< Rank, StaticExtents, StrideOrder, LayoutProp >::is_stride_order_C ( )
inlinestaticconstexpr

Is the stride order equal to C-order?

Returns
True if the stride order is the identity permutation.

Definition at line 235 of file idx_map.hpp.

◆ is_stride_order_Fortran()

template<int Rank, uint64_t StaticExtents, uint64_t StrideOrder, layout_prop_e LayoutProp>
static constexpr bool nda::idx_map< Rank, StaticExtents, StrideOrder, LayoutProp >::is_stride_order_Fortran ( )
inlinestaticconstexpr

Is the stride order equal to Fortran-order?

Returns
True if the stride order is the reverse identity permutation.

Definition at line 241 of file idx_map.hpp.

◆ is_stride_order_valid() [1/2]

template<int Rank, uint64_t StaticExtents, uint64_t StrideOrder, layout_prop_e LayoutProp>
bool nda::idx_map< Rank, StaticExtents, StrideOrder, LayoutProp >::is_stride_order_valid ( ) const
inlinenodiscard

Check if the shape and strides of the current map are compatible with its stride order.

See idx_map::is_stride_order_valid(Int *lenptr, Int *strptr)).

Returns
True if the shape and strides are compatible with the stride order.

Definition at line 267 of file idx_map.hpp.

◆ is_stride_order_valid() [2/2]

template<int Rank, uint64_t StaticExtents, uint64_t StrideOrder, layout_prop_e LayoutProp>
template<std::integral Int>
static bool nda::idx_map< Rank, StaticExtents, StrideOrder, LayoutProp >::is_stride_order_valid ( Int * lenptr,
Int * strptr )
inlinestaticnodiscard

Check if a given shape and strides are compatible with the stride order.

Template Parameters
IntInteger type.
Parameters
lenptrPointer to a shape array.
strptrPointer to a stride array.
Returns
True if the given shape and strides are compatible with the stride order.

Definition at line 252 of file idx_map.hpp.

◆ is_strided_1d()

template<int Rank, uint64_t StaticExtents, uint64_t StrideOrder, layout_prop_e LayoutProp>
bool nda::idx_map< Rank, StaticExtents, StrideOrder, LayoutProp >::is_strided_1d ( ) const
inlinenodiscardnoexcept

Is the data strided in memory with a constant stride?

The data is strided in memory with a constant stride if the size of the map times the absolute value of the stride of the fastest dimension with an extent bigger than 1 is equal to the number of memory locations spanned by the map, i.e. the absolute value of the product of the largest stride times the length of the corresponding dimension.

Returns
True if the data is strided in memory with a constant stride, false otherwise.

Definition at line 223 of file idx_map.hpp.

◆ lengths()

template<int Rank, uint64_t StaticExtents, uint64_t StrideOrder, layout_prop_e LayoutProp>
std::array< long, Rank > const & nda::idx_map< Rank, StaticExtents, StrideOrder, LayoutProp >::lengths ( ) const
inlinenodiscardnoexcept

Get the extents of all dimensions.

Returns
std::array<long, Rank> containing the extent of each dimension.

Definition at line 178 of file idx_map.hpp.

◆ min_stride()

template<int Rank, uint64_t StaticExtents, uint64_t StrideOrder, layout_prop_e LayoutProp>
long nda::idx_map< Rank, StaticExtents, StrideOrder, LayoutProp >::min_stride ( ) const
inlinenodiscardnoexcept

Get the value of the smallest stride (positive or negative).

Returns
Stride of the fastest varying dimension.

Definition at line 190 of file idx_map.hpp.

◆ operator()()

template<int Rank, uint64_t StaticExtents, uint64_t StrideOrder, layout_prop_e LayoutProp>
template<typename... Args>
__inline__ long nda::idx_map< Rank, StaticExtents, StrideOrder, LayoutProp >::operator() ( Args const &... args) const
inlinenoexcept

Function call operator to map a given multi-dimensional index to a linear index.

All arguments are either convertible to type long or are of type nda::ellipsis. The number of non-ellipsis arguments must be equal to the rank of the map and there must be at most one nda::ellipsis. If an nda::ellipsis is present, it is skipped and does not influence the result.

Let \( (a_0, ..., a_{n-1}) \) be the given multi-dimensional index and let \( (s_0, ..., s_{n-1}) \) be the strides of the index map. Then the equation that maps the multi-dimensional index to the corresponding linear index \( f \) is as follows:

\[ f = \sum_{i=0}^{n-1} a_i * s_i \; . \]

Template Parameters
ArgsTypes of the arguments.
Parameters
argsMulti-dimensional index.
Returns
Linear/Flat index.

Definition at line 517 of file idx_map.hpp.

◆ operator==()

template<int Rank, uint64_t StaticExtents, uint64_t StrideOrder, layout_prop_e LayoutProp>
template<int R, uint64_t SE, uint64_t SO, layout_prop_e LP>
bool nda::idx_map< Rank, StaticExtents, StrideOrder, LayoutProp >::operator== ( idx_map< R, SE, SO, LP > const & rhs) const
inline

Equal-to operator for two nda::idx_map objects.

Template Parameters
RRank of the other nda::idx_map.
SEStatic extents of the other nda::idx_map.
SOStride order of the other nda::idx_map.
LPLayout properties of the other nda::idx_map.
Parameters
rhsRight hand side nda::idx_map operand.
Returns
True if their ranks, shapes and strides are equal.

Definition at line 590 of file idx_map.hpp.

◆ rank()

template<int Rank, uint64_t StaticExtents, uint64_t StrideOrder, layout_prop_e LayoutProp>
static constexpr int nda::idx_map< Rank, StaticExtents, StrideOrder, LayoutProp >::rank ( )
inlinestaticconstexprnoexcept

Get the rank of the map.

Returns
Number of dimensions.

Definition at line 154 of file idx_map.hpp.

◆ size()

template<int Rank, uint64_t StaticExtents, uint64_t StrideOrder, layout_prop_e LayoutProp>
long nda::idx_map< Rank, StaticExtents, StrideOrder, LayoutProp >::size ( ) const
inlinenodiscardnoexcept

Get the total number of elements.

Returns
Product of the extents of all dimensions.

Definition at line 160 of file idx_map.hpp.

◆ slice()

template<int Rank, uint64_t StaticExtents, uint64_t StrideOrder, layout_prop_e LayoutProp>
template<typename... Args>
auto nda::idx_map< Rank, StaticExtents, StrideOrder, LayoutProp >::slice ( Args const &... args) const
inline

Get a new nda::idx_map by taking a slice of the current one.

See nda::slice_static::slice_idx_map for more information.

Template Parameters
ArgsTypes of the arguments.
Parameters
argsMulti-dimensional index consisting of long, nda::range, nda::range::all_t or nda::ellipsis objects.
Returns
A std::pair containing the offset in memory, i.e. the flat index of the first element of the slice and the new nda::idx_map.

Definition at line 575 of file idx_map.hpp.

◆ strides()

template<int Rank, uint64_t StaticExtents, uint64_t StrideOrder, layout_prop_e LayoutProp>
std::array< long, Rank > const & nda::idx_map< Rank, StaticExtents, StrideOrder, LayoutProp >::strides ( ) const
inlinenodiscardnoexcept

Get the strides of all dimensions.

Returns
std::array<long, Rank> containing the stride of each dimension.

Definition at line 184 of file idx_map.hpp.

◆ to_idx()

template<int Rank, uint64_t StaticExtents, uint64_t StrideOrder, layout_prop_e LayoutProp>
std::array< long, Rank > nda::idx_map< Rank, StaticExtents, StrideOrder, LayoutProp >::to_idx ( long lin_idx) const
inline

Calculate the multi-dimensional index from a given linear index.

Let \( f \) be the given linear index and let \( (s_0, ..., s_{n-1}) \) be the strides of the index map. Then the corresponding multi-dimensional index \( (a_0, ..., a_{n-1}) \) satisfies the following equation:

\[ f = \sum_{i=0}^{n-1} a_i * s_i \; . \]

Furthermore, if \( (p_0, ..., p_{n-1}) \) is the stride order of the map, let us define the residues \( r_{p_i} \) as

\[ r_{p_i} = \sum_{j=i}^{n-1} s_{p_j} * a_{p_j} \; , \]

with the property that \( s_{p_i} \leq r_{p_i} < s_{p_{i-1}} \) for \( i = 1, ..., n-1 \) and \( s_{p_0} \leq r_{p_0} = f \). We can use this property to first calculate the residues and then recover the multi-dimensional index.

Parameters
lin_idxLinear/Flat index.
Returns
Multi-dimensional index.

Definition at line 548 of file idx_map.hpp.

◆ transpose()

template<int Rank, uint64_t StaticExtents, uint64_t StrideOrder, layout_prop_e LayoutProp>
template<uint64_t Permutation>
auto nda::idx_map< Rank, StaticExtents, StrideOrder, LayoutProp >::transpose ( ) const
inline

Create a new map by permuting the indices/dimensions of the current map with a given permutation.

Let A be the current and A' the new, permuted index map. P is the given permutation. We define the permuted nda::idx_map A' to be the one with the following properties:

  • A'(i_0,...,i_{n-1}) = A(i_{P[0]},...,i_{P[n-1]})
  • A'.lengths()[k] == A.lengths()[P^{-1}[k]]
  • A'.strides()[k] == A.strides()[P^{-1}[k]]
  • The stride order of A' is the composition of P and the stride order of A (note that the stride order itself is a permutation).
Template Parameters
PermutationPermutation to apply.
Returns
New nda::idx_map with permuted indices.

Definition at line 609 of file idx_map.hpp.


The documentation for this class was generated from the following file: