TRIQS/nda 1.3.0
Multi-dimensional array library for C++
Loading...
Searching...
No Matches
gelss_worker.hpp
Go to the documentation of this file.
1// Copyright (c) 2020--present, The Simons Foundation
2// This file is part of TRIQS/nda and is licensed under the Apache License, Version 2.0.
3// SPDX-License-Identifier: Apache-2.0
4// See LICENSE in the root of this distribution for details.
5
10
11#pragma once
12
13#include "./gesvd.hpp"
14#include "../algorithms.hpp"
15#include "../arithmetic.hpp"
16#include "../basic_array.hpp"
17#include "../declarations.hpp"
18#include "../exceptions.hpp"
21#include "../linalg.hpp"
24
25#include <itertools/itertools.hpp>
26
27#include <algorithm>
28#include <array>
29#include <cmath>
30#include <complex>
31#include <optional>
32#include <utility>
33#include <vector>
34
35namespace nda::lapack {
36
41
82 template <typename T>
84 public:
89 int n_var() const { return N_; }
90
95 [[nodiscard]] array<double, 1> const &S_vec() const { return s_; }
96
106 gelss_worker(matrix_const_view<T> A) : M_(A.extent(0)), N_(A.extent(1)), s_(std::min(M_, N_)) {
107 if (N_ > M_) NDA_RUNTIME_ERROR << "Error in nda::lapack::gelss_worker: Matrix A cannot have more columns than rows";
108
109 // initialize matrices
110 matrix<T, F_layout> A_work{A};
111 matrix<T, F_layout> U(M_, M_);
112 matrix<T, F_layout> V_H(N_, N_);
113
114 // calculate the SVD: A = U * \Sigma * V^H
115 gesvd(A_work, s_, U, V_H);
116
117 // calculate the pseudo inverse A^{+} = V * \Sigma^{+} * U^H
118 matrix<double, F_layout> S_plus(N_, M_);
119 S_plus = 0.;
120 for (long i : range(s_.size())) S_plus(i, i) = 1.0 / s_(i);
121 A_plus_ = dagger(V_H) * S_plus * dagger(U);
122
123 // set U_N^H
124 if (N_ < M_) U_N_H_ = dagger(U)(range(N_, M_), range(M_));
125 }
126
141 auto operator()(matrix_const_view<T> B, std::optional<long> /* inner_matrix_dim */ = {}) const {
142 using std::sqrt;
143 double err = 0.0;
144 if (M_ != N_) {
145 std::vector<double> err_vec;
146 for (long i : range(B.shape()[1])) err_vec.push_back(frobenius_norm(U_N_H_ * B(range::all, range(i, i + 1))) / sqrt(B.shape()[0]));
147 err = *std::ranges::max_element(err_vec);
148 }
149 return std::pair<matrix<T>, double>{A_plus_ * B, err};
150 }
151
162 auto operator()(vector_const_view<T> b, std::optional<long> /*inner_matrix_dim*/ = {}) const {
163 using std::sqrt;
164 double err = 0.0;
165 if (M_ != N_) { err = nda::linalg::norm(U_N_H_ * b) / sqrt(b.size()); }
166 return std::pair<vector<T>, double>{A_plus_ * b, err};
167 }
168
169 private:
170 // Number of rows (M) and columns (N) of the Matrix A.
171 long M_, N_;
172
173 // Pseudo inverse of A, i.e. A^{+} = V * \Sigma^{+} * U^H.
174 matrix<T> A_plus_;
175
176 // U_N^H defining the error of the least squares problem.
177 matrix<T> U_N_H_;
178
179 // Array containing the singular values.
181 };
182
205 public:
210 int n_var() const { return lss_herm_.n_var(); }
211
216 [[nodiscard]] array<double, 1> const &S_vec() const { return lss_.S_vec(); }
217
222 gelss_worker_hermitian(matrix_const_view<std::complex<double>> A) : lss_(A), lss_herm_(vstack(A, conj(A))) {}
223
235 auto operator()(matrix_const_view<std::complex<double>> B, std::optional<long> inner_matrix_dim = {}) const {
236 if (not inner_matrix_dim.has_value())
237 NDA_RUNTIME_ERROR << "Error in nda::lapack::gelss_worker_hermitian: Inner matrix dimension required for hermitian least square fitting";
238 long d = *inner_matrix_dim;
239
240 // take the inner 'adjoint' of a matrix C:
241 // * reshape C -> C': (M, N) -> (M, N', d, d)
242 // * for each m and n: C'(m, n, :, :) -> C'(m, n, :, :)^/dagger
243 // * reshape C' -> C: (M, N', d, d) -> (M, N)
244 auto inner_adjoint = [d](auto &C) {
245 NDA_ASSERT2(C.shape()[1] % (d * d) == 0, "Error in nda::lapack::gelss_worker_hermitian: Data shape incompatible with inner matrix dimension");
246 auto shape = C.shape();
247
248 // get extent N' of second dimension
249 long N = shape[1] / (d * d);
250
251 // reshape, transpose and take the complex conjugate
252 array<std::complex<double>, 4> arr_dag =
253 conj(permuted_indices_view<encode(std::array{0, 1, 3, 2})>(reshape(C, std::array{shape[0], N, d, d})));
254
255 // return the result in a new matrix
256 return matrix<std::complex<double>>{reshape(std::move(arr_dag), shape)};
257 };
258
259 // solve the extended system vstack(A, A*) * X = vstack(B, B_dag)
260 auto B_dag = inner_adjoint(B);
261 auto [x, err] = lss_herm_(vstack(B, B_dag));
262
263 // resymmetrize the results to cure small hermiticity violations
264 return std::pair<matrix<std::complex<double>>, double>{0.5 * (x + inner_adjoint(x)), err};
265 }
266
267 private:
268 // Worker for the original least squares problem.
269 gelss_worker<std::complex<double>> lss_;
270
271 // Worker for the extended least squares problem.
272 gelss_worker<std::complex<double>> lss_herm_;
273 };
274
276
277} // namespace nda::lapack
Provides various algorithms to be used with nda::Array objects.
Provides lazy expressions for nda::Array types.
Provides the generic class for arrays.
auto const & shape() const noexcept
Get the shape of the view/array.
long size() const noexcept
Get the total size of the view/array.
int n_var() const
Get the number of variables of the given problem.
auto operator()(matrix_const_view< std::complex< double > > B, std::optional< long > inner_matrix_dim={}) const
Solve the least squares problem for a given right hand side matrix .
array< double, 1 > const & S_vec() const
Get the singular values of the original matrix .
gelss_worker_hermitian(matrix_const_view< std::complex< double > > A)
Construct a new worker object for a given matrix .
auto operator()(vector_const_view< T > b, std::optional< long >={}) const
Solve the least squares problem for a given right hand side vector .
array< double, 1 > const & S_vec() const
Get the singular values, i.e. the diagonal elements of the matrix .
gelss_worker(matrix_const_view< T > A)
Construct a new worker object for a given matrix .
auto operator()(matrix_const_view< T > B, std::optional< long >={}) const
Solve the least squares problem for a given right hand side matrix .
int n_var() const
Get the number of variables of the given problem, i.e. the size of the vector .
Provides various convenient aliases and helper functions for nda::basic_array and nda::basic_array_vi...
Provides a custom runtime error class and macros to assert conditions and throw exceptions.
Provides a generic interface to the LAPACK gesvd routine.
auto permuted_indices_view(A &&a)
Permute the indices/dimensions of an nda::basic_array or nda::basic_array_view.
auto reshape(A &&a, std::array< Int, R > const &new_shape)
Reshape an nda::basic_array or nda::basic_array_view.
matrix< get_value_t< A > > vstack(A const &a, B const &b)
Stack two 2-dimensional arrays/views vertically.
auto sqrt(A &&a)
Function sqrt for non-matrix nda::ArrayOrScalar types (lazy and coefficient-wise for nda::Array types...
ArrayOfRank< 2 > auto dagger(M const &m)
Get the conjugate transpose of 2-dimensional array/view.
double frobenius_norm(A const &a)
Calculate the Frobenius norm of a 2-dimensional array.
decltype(auto) conj(A &&a)
Function conj for nda::ArrayOrScalar types (lazy and coefficient-wise for nda::Array types with a com...
basic_array< ValueType, Rank, Layout, 'A', ContainerPolicy > array
Alias template of an nda::basic_array with an 'A' algebra.
basic_array_view< ValueType const, 1, Layout, 'V', default_accessor, borrowed<> > vector_const_view
Same as nda::vector_view except for const value types.
basic_array_view< ValueType const, 2, Layout, 'M', default_accessor, borrowed<> > matrix_const_view
Same as nda::matrix_view except for const value types.
basic_array< ValueType, 2, Layout, 'M', ContainerPolicy > matrix
Alias template of an nda::basic_array with rank 2 and an 'M' algebra.
int gesvd(A &&a, S &&s, U &&u, VT &&vt)
Interface to the LAPACK gesvd routine.
Definition gesvd.hpp:67
double norm(A const &a, double p=2.0)
Calculate the p-norm of an nda::ArrayOfRank<1> object with scalar values. The p-norm is defined as.
Definition norm.hpp:46
constexpr uint64_t encode(std::array< int, N > const &a)
Encode a std::array<int, N> in a uint64_t.
Provides definitions of various layout policies.
Provides functions to transform the memory layout of an nda::basic_array or nda::basic_array_view.
Includes all relevant headers for the linear algebra functionality.
Provides some custom implementations of standard mathematical functions used for lazy,...
Provides functions to create and manipulate matrices, i.e. arrays/view with 'M' algebra.