eliashberg_product_fft¶
Synopsis:
triqs_tprf::gk_iw_t eliashberg_product_fft (triqs_tprf::chi_tr_vt Gamma_pp_dyn_tr,
triqs_tprf::chi_r_vt Gamma_pp_const_r, triqs_tprf::gk_iw_vt g_wk,
triqs_tprf::gk_iw_vt delta_wk)
Linearized Eliashberg product via FFT
Parameters¶
- chi_rt: dynamic part of the particle-particle vertex \(\Gamma^{(pp)}_{a\bar{b}c\bar{d}}(\mathbf{r}, \tau)\)
- chi_r: constant part of the particle-particle vertex \(\Gamma^{(pp)}_{a\bar{b}c\bar{d}}(\mathbf{r})\)
- g_kw: single particle Green’s function \(G_{a\bar{b}}(\mathbf{k}, i\nu_n)\)
- delta_kw: pairing self-energy \(\Delta_{\bar{a}\bar{b}}(\mathbf{k}, i\nu_n)\)
Return value¶
Gives the result of the product \(\Delta^{(out)} \sim \Gamma^{(pp)}GG \Delta\)
Documentation¶
Computes the product
(1)¶\[\begin{split}\Delta^{(out)}_{\bar{a}\bar{b}}(\mathbf{k},i\nu) = -\frac{1}{N_k \beta}\sum_{\mathbf{k}'} \sum_{i\nu'} \Gamma_{A\bar{a}B\bar{b}}(\mathbf{k}-\mathbf{k}', i\nu - i\nu') \\ \times G_{A\bar{c}}(\mathbf{k}', i\nu') \Delta_{\bar{c}\bar{d}}(\mathbf{k}', i\nu') G_{B\bar{d}}(-\mathbf{k}', -i\nu')\,,\end{split}\]by taking advantage of the convolution theorem.
We therefore first calculate
(2)¶\[\Delta^{(out)}_{\bar{a}\bar{b}}(\mathbf{r}, \tau) = -\Gamma_{A\bar{a}B\bar{b}}(\mathbf{r}, \tau) F_{AB}(\mathbf{r}, \tau) \,,\]where
(3)¶\[F_{AB}(\mathbf{r}, \tau) = \mathcal{F}\big(G_{A\bar{c}}(\mathbf{k}', i\nu') \Delta_{\bar{c}\bar{d}}(\mathbf{k}', i\nu') G_{B\bar{d}}(-\mathbf{k}', -i\nu')\big)\,.\]Then we Fourier transform
(4)¶\[\Delta^{(out)}_{\bar{a}\bar{b}}(\mathbf{k},i\nu) = \mathcal{F}\big(\Delta^{(out)}_{\bar{a}\bar{b}}(\mathbf{r}, \tau)\big)\,,\]to get the same result, but with far less computational effort.