Example 1: Storing basic data types¶
The simplest way to interact with HDF5 files is to use the TRIQS HDFArchive class, which represents the tree structure of the file in a way similar to a dictionary.
Let us start with a very simple example [file]
:
from h5 import *
import numpy
R = HDFArchive('myfile.h5', 'w') # Opens the file myfile.h5, in read/write mode
R['mu'] = 1.29
R.create_group('S')
S= R['S']
S['a'] = "a string"
S['b'] = numpy.array([1,2,3])
del R,S # closing the files (optional:
#file is closed when the references to R and subgroup are deleted)
Run this and say
MyComputer:~>h5ls -r myfile.h5
/ Group
/S Group
/S/a Dataset {SCALAR}
/S/b Dataset {3}
/mu Dataset {SCALAR}
This shows the tree structure of the file. We see that :
- mu is stored at the root /
- S is a subgroup, containing a and b.
- For each leaf, the type (scalar or array) is given.
To dump the content of the file use, for example, the following: (see the HDF5 documentation for more information)
MyComputer:~>h5dump myfile.h5
HDF5 "myfile.h5" {
GROUP "/" {
GROUP "S" {
DATASET "a" {
DATATYPE H5T_STRING {
STRSIZE H5T_VARIABLE;
STRPAD H5T_STR_NULLTERM;
CSET H5T_CSET_ASCII;
CTYPE H5T_C_S1;
}
DATASPACE SCALAR
DATA {
(0): "a string"
}
}
DATASET "b" {
DATATYPE H5T_STD_I32LE
DATASPACE SIMPLE { ( 3 ) / ( 3 ) }
DATA {
(0): 1, 2, 3
}
}
}
DATASET "mu" {
DATATYPE H5T_IEEE_F64LE
DATASPACE SCALAR
DATA {
(0): 1.29
}
}
}
}