triqs_ctseg.solver.Solver
Methods
|
Initialise the solver. |
Signature : (triqs_ctseg::solve_params_t p, int n_w, int n_w_b) -> None |
|
|
Solve the impurity problem. |
Attributes
Density-density retarded interactions $mathcal{D}^{sigmasigma'}_{0,ab}(iOmega)$ |
|
Hybridization function $Delta^sigma_{ab}(tau)$ |
|
3-point improved estimator (see [[measure_g2w]]) |
|
4-point improved estimator (see [[measure_g3w]]) |
|
Improved estimator function $F^sigma_{ab}(iomega)$ (see [[measure_gw]]) |
|
Improved estimator function in Legendre basis $G^sigma_{ab}(n)$ (see [[measure_gl]]) |
|
Improved estimator function $F^sigma_{ab}(tau)$ (see [[measure_gt]]) |
|
Weiss field $mathcal{G}^{sigma}_{0,ab}(iomega)$ |
|
3-point correlation function $chi^{sigmasigma'}_{abc}(iomega,iOmega)$ (see [[measure_g2w]]) |
|
4-point correlation function $chi^{sigmasigma'}_{abcd}(iomega,iomega',iOmega)$ (see [[measure_g3w]]) |
|
Impurity Green's function $G^sigma_{ab}(iomega)$ (see [[measure_gw]]) |
|
Impurity Green's function in Legendre basis $G^sigma_{ab}(n)$ (see [[measure_gl]]) |
|
Impurity Green's function $G^sigma_{ab}(tau)$ (see [[measure_gt]]) |
|
Dynamical spin-spin interaction, perpendicual components: $mathcal{J}_perp(iOmega)$ |
|
Dynamical spin-spin interactions $mathcal{J}_perp(tau)$ |
|
Dynamical kernel $K(tau)$ |
|
Derivative of the dynamical kernel $partial_tau K_perp(tau)$ |
|
Derivative of the dynamical kernel $partial_tau K(tau)$ |
|
Impurity self-energy $Sigma^sigma_{ab}(iomega)$ (see [[measure_gw]]) |
|
Monte Carlo sign |
|
Spin spin correlation function $langle s_+(tau) s_-(0)rangle$ (see [[measure_chipmt]]) |
|
histogram of hybridization perturbation order (see [[measure_hist]]) |
|
histogram of $mathcal{J}_perp$ perturbation order (see [[measure_hist_composite]]) |
|
density-density static correlation $langle n^sigma_a n^{sigma'}_b rangle$ (see [[measure_nn]]) |
|
Density-density correlation function $mathrm{FT}left[langle n^sigma_{a}(tau) n^{sigma'}_{b}(0)rangleright]$ (see [[measure_nnw]]) |
|
Density-density correlation function $langle n^sigma_{a}(tau) n^{sigma'}_{b}(0)rangle$ (see [[measure_nnt]]) |
|
histogram of the boundary states of the trace (see [[measure_statehist]]) |