TRIQS/nda 1.3.0
Multi-dimensional array library for C++
Loading...
Searching...
No Matches
basic_array.hpp
Go to the documentation of this file.
1// Copyright (c) 2018--present, The Simons Foundation
2// This file is part of TRIQS/nda and is licensed under the Apache License, Version 2.0.
3// SPDX-License-Identifier: Apache-2.0
4// See LICENSE in the root of this distribution for details.
5
10
11#pragma once
12
13#include "./accessors.hpp"
15#include "./basic_functions.hpp"
16#include "./concepts.hpp"
17#include "./exceptions.hpp"
18#include "./iterators.hpp"
19#include "./layout/for_each.hpp"
21#include "./layout/range.hpp"
23#include "./macros.hpp"
25#include "./mem/memcpy.hpp"
26#include "./mem/policies.hpp"
27#include "./stdutil/array.hpp"
28#include "./traits.hpp"
29
30#include <algorithm>
31#include <array>
32#include <complex>
33#include <concepts>
34#include <initializer_list>
35#include <random>
36#include <ranges>
37#include <type_traits>
38#include <utility>
39
40#ifdef NDA_ENFORCE_BOUNDCHECK
41#include <exception>
42#include <iostream>
43#endif // NDA_ENFORCE_BOUNDCHECK
44
45namespace nda {
46
99 template <typename ValueType, int Rank, typename LayoutPolicy, char Algebra, typename ContainerPolicy>
100 class basic_array {
101 // Compile-time checks.
102 static_assert(!std::is_const_v<ValueType>, "Error in nda::basic_array: ValueType cannot be const");
103 static_assert((Algebra != 'N'), "Internal error in nda::basic_array: Algebra 'N' not supported");
104 static_assert((Algebra != 'M') or (Rank == 2), "Internal error in nda::basic_array: Algebra 'M' requires a rank 2 array");
105 static_assert((Algebra != 'V') or (Rank == 1), "Internal error in nda::basic_array: Algebra 'V' requires a rank 1 array");
106
107 public:
109 using value_type = ValueType;
110
112 using layout_policy_t = LayoutPolicy;
113
115 using layout_t = typename LayoutPolicy::template mapping<Rank>;
116
118 using container_policy_t = ContainerPolicy;
119
121 using storage_t = typename ContainerPolicy::template handle<ValueType>;
122
124 using regular_type = basic_array;
125
127 static constexpr int rank = Rank;
128
129 // Compile-time check.
130 static_assert(has_contiguous(layout_t::layout_prop), "Error in nda::basic_array: Memory layout has to be contiguous");
131
132 private:
133 // Type of the array itself.
134 using self_t = basic_array;
135
136 // Type of the accessor policy for views (no no_alias_accessor).
137 using AccessorPolicy = default_accessor;
138
139 // Type of the owning policy for views.
140 using OwningPolicy = borrowed<storage_t::address_space>;
141
142 // Constexpr variable that is true if the value_type is const (never for basic_array).
143 static constexpr bool is_const = false;
144
145 // Constexpr variable that is true if the array is a view (never for basic_array).
146 static constexpr bool is_view = false;
147
148 // Memory layout of the array, i.e. the nda::idx_map.
149 layout_t lay;
150
151 // Memory handle of the array.
152 storage_t sto;
153
154 // Construct an array with a given shape and initialize the memory with zeros.
155 template <std::integral Int = long>
156 basic_array(std::array<Int, Rank> const &shape, mem::init_zero_t) : lay{shape}, sto{lay.size(), mem::init_zero} {}
157
158 public:
163 auto as_array_view() { return basic_array_view<ValueType, Rank, LayoutPolicy, 'A', AccessorPolicy, OwningPolicy>{*this}; };
164
169 auto as_array_view() const { return basic_array_view<const ValueType, Rank, LayoutPolicy, 'A', AccessorPolicy, OwningPolicy>{*this}; };
170
172 [[deprecated]] auto transpose()
173 requires(Rank == 2)
174 {
175 return permuted_indices_view<encode(std::array<int, 2>{1, 0})>(*this);
176 }
177
179 [[deprecated]] auto transpose() const
180 requires(Rank == 2)
181 {
182 return permuted_indices_view<encode(std::array<int, 2>{1, 0})>(*this);
183 }
184
186 basic_array() {}; // NOLINT (user-defined constructor to avoid value initialization of the sso buffer)
187
189 basic_array(basic_array &&) = default;
190
192 explicit basic_array(basic_array const &a) = default;
193
203 template <char A, typename CP>
204 explicit basic_array(basic_array<ValueType, Rank, LayoutPolicy, A, CP> a) noexcept : lay(a.indexmap()), sto(std::move(a.storage())) {}
205
215 template <std::integral... Ints>
216 requires(sizeof...(Ints) == Rank)
217 explicit basic_array(Ints... is) {
218 // setting the layout and storage in the constructor body improves error messages for wrong # of args
219 lay = layout_t{std::array{long(is)...}}; // NOLINT (for better error messages)
220 sto = storage_t{lay.size()}; // NOLINT (for better error messages)
221 }
222
231 template <std::integral Int, typename RHS>
232 explicit basic_array(Int sz, RHS const &val)
233 requires((Rank == 1 and is_scalar_for_v<RHS, basic_array>))
234 : lay(layout_t{std::array{long(sz)}}), sto{lay.size()} {
235 assign_from_scalar(val);
236 }
237
246 template <std::integral Int = long>
247 explicit basic_array(std::array<Int, Rank> const &shape)
248 requires(std::is_default_constructible_v<ValueType>)
249 : lay(shape), sto(lay.size()) {}
250
258 explicit basic_array(layout_t const &layout)
259 requires(std::is_default_constructible_v<ValueType>)
260 : lay{layout}, sto{lay.size()} {}
261
270 explicit basic_array(layout_t const &layout, storage_t &&storage) noexcept : lay{layout}, sto{std::move(storage)} {}
271
278 template <ArrayOfRank<Rank> A>
279 requires(HasValueTypeConstructibleFrom<A, ValueType>)
280 basic_array(A const &a) : lay(a.shape()), sto{lay.size(), mem::do_not_initialize} {
281 static_assert(std::is_constructible_v<ValueType, get_value_t<A>>, "Error in nda::basic_array: Incompatible value types in constructor");
282 if constexpr (std::is_trivial_v<ValueType> or is_complex_v<ValueType>) {
283 // trivial and complex value types can use the optimized assign_from_ndarray
284 if constexpr (std::is_same_v<ValueType, get_value_t<A>>)
285 assign_from_ndarray(a);
286 else
287 assign_from_ndarray(nda::map([](auto const &val) { return ValueType(val); })(a));
288 } else {
289 // general value types may not be default constructible -> use placement new
290 nda::for_each(lay.lengths(), [&](auto const &...is) { new (sto.data() + lay(is...)) ValueType{a(is...)}; });
291 }
292 }
293
303 template <ArrayInitializer<basic_array> Initializer> // can not be explicit
304 basic_array(Initializer const &initializer) : basic_array{initializer.shape()} {
305 initializer.invoke(*this);
306 }
307
308 private:
309 // Get the corresponding shape from an initializer list.
310 static std::array<long, 1> shape_from_init_list(std::initializer_list<ValueType> const &l) noexcept { return {long(l.size())}; }
311
312 // Get the corresponding shape from a nested initializer list.
313 template <typename L>
314 static auto shape_from_init_list(std::initializer_list<L> const &l) noexcept {
315 const auto [min, max] = std::minmax_element(std::begin(l), std::end(l), [](auto &&x, auto &&y) { return x.size() < y.size(); });
316 EXPECTS_WITH_MESSAGE(min->size() == max->size(),
317 "Error in nda::basic_array: Arrays can only be initialized with rectangular initializer lists");
318 return stdutil::front_append(shape_from_init_list(*max), long(l.size()));
319 }
320
321 public:
326 basic_array(std::initializer_list<ValueType> const &l)
327 requires(Rank == 1)
328 : lay(std::array<long, 1>{long(l.size())}), sto{lay.size(), mem::do_not_initialize} {
329 long i = 0;
330 for (auto const &x : l) { new (sto.data() + lay(i++)) ValueType{x}; }
331 }
332
337 basic_array(std::initializer_list<std::initializer_list<ValueType>> const &l2)
338 requires(Rank == 2)
339 : lay(shape_from_init_list(l2)), sto{lay.size(), mem::do_not_initialize} {
340 long i = 0, j = 0;
341 for (auto const &l1 : l2) {
342 for (auto const &x : l1) { new (sto.data() + lay(i, j++)) ValueType{x}; }
343 j = 0;
344 ++i;
345 }
346 }
347
352 basic_array(std::initializer_list<std::initializer_list<std::initializer_list<ValueType>>> const &l3)
353 requires(Rank == 3)
354 : lay(shape_from_init_list(l3)), sto{lay.size(), mem::do_not_initialize} {
355 long i = 0, j = 0, k = 0;
356 for (auto const &l2 : l3) {
357 for (auto const &l1 : l2) {
358 for (auto const &x : l1) { new (sto.data() + lay(i, j, k++)) ValueType{x}; }
359 k = 0;
360 ++j;
361 }
362 j = 0;
363 ++i;
364 }
365 }
366
376 template <char A2>
377 explicit basic_array(basic_array<ValueType, 2, LayoutPolicy, A2, ContainerPolicy> &&a) noexcept
378 requires(Rank == 2)
379 : basic_array{a.indexmap(), std::move(a).storage()} {}
380
388 template <std::integral Int = long>
389 static basic_array zeros(std::array<Int, Rank> const &shape)
390 requires(std::is_standard_layout_v<ValueType> && std::is_trivially_copyable_v<ValueType>)
391 {
393 }
394
402 template <std::integral... Ints>
403 static basic_array zeros(Ints... is)
404 requires(sizeof...(Ints) == Rank)
405 {
406 return zeros(std::array<long, Rank>{is...});
407 }
408
416 template <std::integral Int = long>
417 static basic_array ones(std::array<Int, Rank> const &shape)
419 {
420 auto res = basic_array{stdutil::make_std_array<long>(shape)};
421 res() = ValueType{1};
422 return res;
423 }
424
432 template <std::integral... Ints>
433 static basic_array ones(Ints... is)
434 requires(sizeof...(Ints) == Rank)
435 {
436 return ones(std::array<long, Rank>{is...});
437 }
438
449 template <std::integral Int = long>
450 static basic_array rand(std::array<Int, Rank> const &shape)
451 requires(std::is_floating_point_v<ValueType> or nda::is_complex_v<ValueType>)
452 {
453 using namespace std::complex_literals;
454 auto static gen = std::mt19937(std::random_device{}());
455 auto res = basic_array{shape};
456 if constexpr (nda::is_complex_v<ValueType>) {
457 auto static dist = std::uniform_real_distribution<typename ValueType::value_type>(0.0, 1.0);
458 for (auto &x : res) x = dist(gen) + 1i * dist(gen);
459 } else {
460 auto static dist = std::uniform_real_distribution<ValueType>(0.0, 1.0);
461 for (auto &x : res) x = dist(gen);
462 }
463 return res;
464 }
465
476 template <std::integral... Ints>
477 static basic_array rand(Ints... is)
478 requires(sizeof...(Ints) == Rank)
479 {
480 return rand(std::array<long, Rank>{is...});
481 }
482
484 basic_array &operator=(basic_array &&) = default;
485
487 basic_array &operator=(basic_array const &) = default;
488
499 template <char A, typename CP>
500 basic_array &operator=(basic_array<ValueType, Rank, LayoutPolicy, A, CP> const &rhs) {
501 *this = basic_array{rhs};
502 return *this;
503 }
504
514 template <ArrayOfRank<Rank> RHS>
515 basic_array &operator=(RHS const &rhs) {
516 resize(rhs.shape());
517 assign_from_ndarray(rhs);
518 return *this;
519 }
520
531 template <typename RHS>
532 basic_array &operator=(RHS const &rhs) noexcept
534 {
535 assign_from_scalar(rhs);
536 return *this;
537 }
538
548 template <ArrayInitializer<basic_array> Initializer>
549 basic_array &operator=(Initializer const &initializer) {
550 resize(initializer.shape());
551 initializer.invoke(*this);
552 return *this;
553 }
554
565 template <std::integral... Ints>
566 void resize(Ints const &...is) {
567 static_assert(std::is_copy_constructible_v<ValueType>, "Error in nda::basic_array: Resizing requires the value_type to be copy constructible");
568 static_assert(sizeof...(is) == Rank, "Error in nda::basic_array: Resizing requires exactly Rank arguments");
569 resize(std::array<long, Rank>{long(is)...});
570 }
571
581 [[gnu::noinline]] void resize(std::array<long, Rank> const &shape) {
582 lay = layout_t(shape);
583 if (sto.is_null() or (sto.size() != lay.size())) sto = storage_t{lay.size()};
584 }
585
586// include common functionality of arrays and views
587// Copyright (c) 2019--present, The Simons Foundation
588// This file is part of TRIQS/nda and is licensed under the Apache License, Version 2.0.
589// SPDX-License-Identifier: Apache-2.0
590// See LICENSE in the root of this distribution for details.
591
596[[nodiscard]] constexpr auto const &indexmap() const noexcept { return lay; }
597
602[[nodiscard]] storage_t const &storage() const & noexcept { return sto; }
603
608[[nodiscard]] storage_t &storage() & noexcept { return sto; }
609
614[[nodiscard]] storage_t storage() && noexcept { return std::move(sto); }
615
622[[nodiscard]] constexpr auto stride_order() const noexcept { return lay.stride_order; }
623
628[[nodiscard]] ValueType const *data() const noexcept { return sto.data(); }
629
634[[nodiscard]] ValueType *data() noexcept { return sto.data(); }
635
640[[nodiscard]] auto const &shape() const noexcept { return lay.lengths(); }
641
646[[nodiscard]] auto const &strides() const noexcept { return lay.strides(); }
647
652[[nodiscard]] long size() const noexcept { return lay.size(); }
653
658[[nodiscard]] long is_contiguous() const noexcept { return lay.is_contiguous(); }
659
664[[nodiscard]] long has_positive_strides() const noexcept { return lay.has_positive_strides(); }
665
670[[nodiscard]] bool empty() const { return sto.is_null(); }
671
673[[nodiscard]] bool is_empty() const noexcept { return sto.is_null(); }
674
679[[nodiscard]] long extent(int i) const noexcept {
680#ifdef NDA_ENFORCE_BOUNDCHECK
681 if (i < 0 || i >= rank) {
682 std::cerr << "Error in extent: Dimension " << i << " is incompatible with array of rank " << rank << std::endl;
683 std::terminate();
684 }
685#endif
686 return lay.lengths()[i];
687}
688
690[[nodiscard]] long shape(int i) const noexcept { return extent(i); }
691
696[[nodiscard]] auto indices() const noexcept { return itertools::product_range(shape()); }
697
702static constexpr bool is_stride_order_C() noexcept { return layout_t::is_stride_order_C(); }
703
708static constexpr bool is_stride_order_Fortran() noexcept { return layout_t::is_stride_order_Fortran(); }
709
719decltype(auto) operator()(_linear_index_t idx) const noexcept {
720 if constexpr (layout_t::layout_prop == layout_prop_e::strided_1d)
721 return sto[idx.value * lay.min_stride()];
722 else if constexpr (layout_t::layout_prop == layout_prop_e::contiguous)
723 return sto[idx.value];
724 else
725 static_assert(always_false<layout_t>, "Internal error in array/view: Calling this type with a _linear_index_t is not allowed");
726}
727
729decltype(auto) operator()(_linear_index_t idx) noexcept {
730 if constexpr (layout_t::layout_prop == layout_prop_e::strided_1d)
731 return sto[idx.value * lay.min_stride()];
732 else if constexpr (layout_t::layout_prop == layout_prop_e::contiguous)
733 return sto[idx.value];
734 else
735 static_assert(always_false<layout_t>, "Internal error in array/view: Calling this type with a _linear_index_t is not allowed");
736}
737
738private:
739// Constexpr variable that is true if bounds checking is disabled.
740#ifdef NDA_ENFORCE_BOUNDCHECK
741static constexpr bool has_no_boundcheck = false;
742#else
743static constexpr bool has_no_boundcheck = true;
744#endif
745
746public:
763template <char ResultAlgebra, bool SelfIsRvalue, typename Self, typename... Ts>
764FORCEINLINE static decltype(auto) call(Self &&self, Ts const &...idxs) noexcept(has_no_boundcheck) {
765 // resulting value type
766 using r_v_t = std::conditional_t<std::is_const_v<std::remove_reference_t<Self>>, ValueType const, ValueType>;
767
768 // behavior depends on the given arguments
769 if constexpr (clef::is_any_lazy<Ts...>) {
770 // if there are lazy arguments, e.g. as in A(i_) << i_, a lazy expression is returned
771 return clef::make_expr_call(std::forward<Self>(self), idxs...);
772 } else if constexpr (sizeof...(Ts) == 0) {
773 // if no arguments are given, a full view is returned
775 } else {
776 // otherwise we check the arguments and either access a single element or make a slice
777 static_assert(((layout_t::template argument_is_allowed_for_call_or_slice<Ts> + ...) > 0),
778 "Error in array/view: Slice arguments must be convertible to range, ellipsis, or long (or string if the layout permits it)");
779
780 // number of arguments convertible to long
781 static constexpr int n_args_long = (layout_t::template argument_is_allowed_for_call<Ts> + ...);
782
783 if constexpr (n_args_long == rank) {
784 // access a single element
785 long offset = self.lay(idxs...);
786 if constexpr (is_view or not SelfIsRvalue) {
787 // if the calling object is a view or an lvalue, we return a reference
788 return AccessorPolicy::template accessor<r_v_t>::access(self.sto.data(), offset);
789 } else {
790 // otherwise, we return a copy of the value
791 return ValueType{self.sto[offset]};
792 }
793 } else {
794 // access a slice of the view/array
795 auto const [offset, idxm] = self.lay.slice(idxs...);
796 static constexpr auto res_rank = decltype(idxm)::rank();
797 // resulting algebra
798 static constexpr char newAlgebra = (ResultAlgebra == 'M' and (res_rank == 1) ? 'V' : ResultAlgebra);
799 // resulting layout policy
800 using r_layout_p = typename detail::layout_to_policy<std::decay_t<decltype(idxm)>>::type;
802 }
803 }
804}
805
806public:
828template <typename... Ts>
829FORCEINLINE decltype(auto) operator()(Ts const &...idxs) const & noexcept(has_no_boundcheck) {
830 static_assert((rank == -1) or (sizeof...(Ts) == rank) or (sizeof...(Ts) == 0) or (ellipsis_is_present<Ts...> and (sizeof...(Ts) <= rank + 1)),
831 "Error in array/view: Incorrect number of parameters in call operator");
832 return call<Algebra, false>(*this, idxs...);
833}
834
836template <typename... Ts>
837FORCEINLINE decltype(auto) operator()(Ts const &...idxs) & noexcept(has_no_boundcheck) {
838 static_assert((rank == -1) or (sizeof...(Ts) == rank) or (sizeof...(Ts) == 0) or (ellipsis_is_present<Ts...> and (sizeof...(Ts) <= rank + 1)),
839 "Error in array/view: Incorrect number of parameters in call operator");
840 return call<Algebra, false>(*this, idxs...);
841}
842
844template <typename... Ts>
845FORCEINLINE decltype(auto) operator()(Ts const &...idxs) && noexcept(has_no_boundcheck) {
846 static_assert((rank == -1) or (sizeof...(Ts) == rank) or (sizeof...(Ts) == 0) or (ellipsis_is_present<Ts...> and (sizeof...(Ts) <= rank + 1)),
847 "Error in array/view: Incorrect number of parameters in call operator");
848 return call<Algebra, true>(*this, idxs...);
849}
850
868template <typename T>
869decltype(auto) operator[](T const &idx) const & noexcept(has_no_boundcheck) {
870 static_assert((rank == 1), "Error in array/view: Subscript operator is only available for rank 1 views/arrays in C++17/20");
871 return call<Algebra, false>(*this, idx);
872}
873
875template <typename T>
876decltype(auto) operator[](T const &x) & noexcept(has_no_boundcheck) {
877 static_assert((rank == 1), "Error in array/view: Subscript operator is only available for rank 1 views/arrays in C++17/20");
878 return call<Algebra, false>(*this, x);
879}
880
882template <typename T>
883decltype(auto) operator[](T const &x) && noexcept(has_no_boundcheck) {
884 static_assert((rank == 1), "Error in array/view: Subscript operator is only available for rank 1 views/arrays in C++17/20");
885 return call<Algebra, true>(*this, x);
886}
887
889static constexpr int iterator_rank = (has_strided_1d(layout_t::layout_prop) ? 1 : Rank);
890
893
896
897private:
898// Make an iterator for the view/array depending on its type.
899template <typename Iterator>
900[[nodiscard]] auto make_iterator(bool at_end) const noexcept {
901 if constexpr (iterator_rank == Rank) {
902 // multi-dimensional iterator
903 if constexpr (layout_t::is_stride_order_C()) {
904 // C-order case (array_iterator already traverses the data in C-order)
905 return Iterator{indexmap().lengths(), indexmap().strides(), sto.data(), at_end};
906 } else {
907 // general case (we need to permute the shape and the strides according to the stride order of the layout)
908 return Iterator{nda::permutations::apply(layout_t::stride_order, indexmap().lengths()),
909 nda::permutations::apply(layout_t::stride_order, indexmap().strides()), sto.data(), at_end};
910 }
911 } else {
912 // 1-dimensional iterator
913 return Iterator{std::array<long, 1>{size()}, std::array<long, 1>{indexmap().min_stride()}, sto.data(), at_end};
914 }
915}
916
917public:
919[[nodiscard]] const_iterator begin() const noexcept { return make_iterator<const_iterator>(false); }
920
922[[nodiscard]] const_iterator cbegin() const noexcept { return make_iterator<const_iterator>(false); }
923
925iterator begin() noexcept { return make_iterator<iterator>(false); }
926
928[[nodiscard]] const_iterator end() const noexcept { return make_iterator<const_iterator>(true); }
929
931[[nodiscard]] const_iterator cend() const noexcept { return make_iterator<const_iterator>(true); }
932
934iterator end() noexcept { return make_iterator<iterator>(true); }
935
948template <typename RHS>
949auto &operator+=(RHS const &rhs) noexcept {
950 static_assert(not is_const, "Error in array/view: Can not assign to a const view");
951 return operator=(*this + rhs);
952}
953
966template <typename RHS>
967auto &operator-=(RHS const &rhs) noexcept {
968 static_assert(not is_const, "Error in array/view: Can not assign to a const view");
969 return operator=(*this - rhs);
970}
971
984template <typename RHS>
985auto &operator*=(RHS const &rhs) noexcept {
986 static_assert(not is_const, "Error in array/view: Can not assign to a const view");
987 return operator=((*this) * rhs);
988}
989
1002template <typename RHS>
1003auto &operator/=(RHS const &rhs) noexcept {
1004 static_assert(not is_const, "Error in array/view: Can not assign to a const view");
1005 return operator=(*this / rhs);
1006}
1007
1016template <std::ranges::contiguous_range R>
1017auto &operator=(R const &rhs) noexcept
1018 requires(Rank == 1 and not MemoryArray<R> and not is_scalar_for_v<R, self_t>)
1019{
1021 return *this;
1022}
1023
1024private:
1025// Implementation of the assignment from an n-dimensional array type.
1026template <typename RHS>
1027void assign_from_ndarray(RHS const &rhs) { // FIXME noexcept {
1028#ifdef NDA_ENFORCE_BOUNDCHECK
1029 if (this->shape() != rhs.shape())
1030 NDA_RUNTIME_ERROR << "Error in assign_from_ndarray: Size mismatch:"
1031 << "\n LHS.shape() = " << this->shape() << "\n RHS.shape() = " << rhs.shape();
1032#endif
1033 // compile-time check if assignment is possible
1034 static_assert(std::is_assignable_v<value_type &, get_value_t<RHS>>, "Error in assign_from_ndarray: Incompatible value types");
1035
1036 // are both operands nda::MemoryArray types?
1037 static constexpr bool both_in_memory = MemoryArray<self_t> and MemoryArray<RHS>;
1038
1039 // do both operands have the same stride order?
1040 static constexpr bool same_stride_order = get_layout_info<self_t>.stride_order == get_layout_info<RHS>.stride_order;
1041
1042 // prefer optimized options if possible
1043 if constexpr (both_in_memory and same_stride_order) {
1044 if (rhs.empty()) return;
1045 // are both operands strided in 1d?
1046 static constexpr bool both_1d_strided = has_layout_strided_1d<self_t> and has_layout_strided_1d<RHS>;
1047 if constexpr (mem::on_host<self_t, RHS> and both_1d_strided) {
1048 // vectorizable copy on host
1049 for (long i = 0; i < size(); ++i) (*this)(_linear_index_t{i}) = rhs(_linear_index_t{i});
1050 return;
1052 // check for block-layout and use mem::memcpy2D if possible
1053 auto bl_layout_dst = get_block_layout(*this);
1054 auto bl_layout_src = get_block_layout(rhs);
1055 if (bl_layout_dst && bl_layout_src) {
1056 auto [n_bl_dst, bl_size_dst, bl_str_dst] = *bl_layout_dst;
1057 auto [n_bl_src, bl_size_src, bl_str_src] = *bl_layout_src;
1058 // check that the total memory size is the same
1059 if (n_bl_dst * bl_size_dst != n_bl_src * bl_size_src) NDA_RUNTIME_ERROR << "Error in assign_from_ndarray: Incompatible block sizes";
1060 // if either destination or source consists of a single block, we can chunk it up to make the layouts compatible
1061 if (n_bl_dst == 1 && n_bl_src > 1) {
1062 n_bl_dst = n_bl_src;
1063 bl_size_dst /= n_bl_src;
1064 bl_str_dst = bl_size_dst;
1065 }
1066 if (n_bl_src == 1 && n_bl_dst > 1) {
1067 n_bl_src = n_bl_dst;
1068 bl_size_src /= n_bl_dst;
1069 bl_str_src = bl_size_src;
1070 }
1071 // copy only if block-layouts are compatible, otherwise continue to fallback
1072 if (n_bl_dst == n_bl_src && bl_size_dst == bl_size_src) {
1073 mem::memcpy2D<mem::get_addr_space<self_t>, mem::get_addr_space<RHS>>((void *)data(), bl_str_dst * sizeof(value_type), (void *)rhs.data(),
1074 bl_str_src * sizeof(value_type), bl_size_src * sizeof(value_type),
1075 n_bl_src);
1076 return;
1077 }
1078 }
1079 }
1080 }
1081 // otherwise fallback to elementwise assignment
1083 NDA_RUNTIME_ERROR << "Error in assign_from_ndarray: Fallback to elementwise assignment not implemented for arrays/views on the GPU";
1084 }
1085 nda::for_each(shape(), [this, &rhs](auto const &...args) { (*this)(args...) = rhs(args...); });
1086}
1087
1088// Implementation to fill a view/array with a constant scalar value.
1089template <typename Scalar>
1090void fill_with_scalar(Scalar const &scalar) noexcept {
1091 // we make a special implementation if the array is strided in 1d or contiguous
1092 if constexpr (has_layout_strided_1d<self_t>) {
1093 const long L = size();
1094 auto *__restrict const p = data(); // no alias possible here!
1095 if constexpr (has_contiguous_layout<self_t>) {
1096 for (long i = 0; i < L; ++i) p[i] = scalar;
1097 } else {
1098 const long stri = indexmap().min_stride();
1099 const long Lstri = L * stri;
1100 for (long i = 0; i != Lstri; i += stri) p[i] = scalar;
1101 }
1102 } else {
1103 // no compile-time memory layout guarantees
1104 for (auto &x : *this) x = scalar;
1105 }
1106}
1107
1108// Implementation of the assignment from a scalar value.
1109template <typename Scalar>
1110void assign_from_scalar(Scalar const &scalar) noexcept {
1111 static_assert(!is_const, "Error in assign_from_ndarray: Cannot assign to a const view");
1112 if constexpr (Algebra != 'M') {
1113 // element-wise assignment for non-matrix algebras
1114 fill_with_scalar(scalar);
1115 } else {
1116 // a scalar has to be interpreted as a unit matrix for matrix algebras (the scalar in the shortest diagonal)
1117 // FIXME : A priori faster to put 0 everywhere and then change the diag to avoid the if.
1118 // FIXME : Benchmark and confirm.
1120 fill_with_scalar(0);
1121 else
1122 fill_with_scalar(Scalar{0 * scalar}); // FIXME : improve this
1123 const long imax = std::min(extent(0), extent(1));
1124 for (long i = 0; i < imax; ++i) operator()(i, i) = scalar;
1125 }
1126}
1127 };
1128
1129 // Class template argument deduction guides.
1130 template <MemoryArray A>
1131 basic_array(A &&a) -> basic_array<get_value_t<A>, get_rank<A>, get_contiguous_layout_policy<get_rank<A>, get_layout_info<A>.stride_order>,
1132 get_algebra<A>, heap<mem::get_addr_space<A>>>;
1133
1134 template <Array A>
1135 basic_array(A &&a) -> basic_array<get_value_t<A>, get_rank<A>, C_layout, get_algebra<A>, heap<>>;
1136
1137} // namespace nda
Defines accessors for nda::array objects (cf. std::default_accessor).
Provides definitions and type traits involving the different memory address spaces supported by nda.
Provides utility functions for std::array.
Provides the generic class for views.
Provides basic functions to create and manipulate arrays and views.
Iterator for nda::basic_array and nda::basic_array_view types.
A generic view of a multi-dimensional array.
auto & operator+=(RHS const &rhs) noexcept
Addition assignment operator.
basic_array(basic_array< ValueType, 2, LayoutPolicy, A2, ContainerPolicy > &&a) noexcept
Construct a 2-dimensional array from another 2-dimensional array with a different algebra.
basic_array & operator=(RHS const &rhs)
Assignment operator makes a deep copy of an nda::ArrayOfRank object.
typename ContainerPolicy::template handle< ValueType > storage_t
Type of the memory handle (see Handles).
static constexpr bool is_stride_order_Fortran() noexcept
Is the stride order of the view/array in Fortran-order?
ValueType const * data() const noexcept
Get a pointer to the actual data (in general this is not the beginning of the memory block for a view...
ValueType * data() noexcept
Get a pointer to the actual data (in general this is not the beginning of thr memory block for a view...
long shape(int i) const noexcept
const_iterator cbegin() const noexcept
Get a const iterator to the beginning of the view/array.
basic_array(Initializer const &initializer)
Construct an array from an nda::ArrayInitializer object.
static constexpr bool is_stride_order_C() noexcept
Is the stride order of the view/array in C-order?
storage_t & storage() &noexcept
Get the data storage of the view/array.
typename LayoutPolicy::template mapping< Rank > layout_t
Type of the memory layout (an nda::idx_map).
basic_array(A const &a)
Construct an array from an nda::ArrayOfRank object with the same rank by copying each element.
basic_array(basic_array< ValueType, Rank, LayoutPolicy, A, CP > a) noexcept
Construct an array from another array with a different algebra and/or container policy.
auto const & strides() const noexcept
Get the strides of the view/array (see nda::idx_map for more details on how we define strides).
basic_array(Ints... is)
Construct an array with the given dimensions.
static basic_array ones(Ints... is)
Make a one-initialized array with the given dimensions.
const_iterator begin() const noexcept
Get a const iterator to the beginning of the view/array.
auto as_array_view() const
Convert the current array to a view with an 'A' (array) algebra.
basic_array & operator=(Initializer const &initializer)
Assignment operator uses an nda::ArrayInitializer to assign to the array.
long extent(int i) const noexcept
Get the extent of the ith dimension.
basic_array(std::initializer_list< ValueType > const &l)
Construct a 1-dimensional array from an initializer list.
long is_contiguous() const noexcept
Is the memory layout of the view/array contiguous?
basic_array(std::initializer_list< std::initializer_list< ValueType > > const &l2)
Construct a 2-dimensional array from a double nested initializer list.
basic_array regular_type
The associated regular type.
bool empty() const
Is the view/array empty?
void resize(std::array< long, Rank > const &shape)
Resize the array to a new shape.
long has_positive_strides() const noexcept
Are all the strides of the memory layout of the view/array positive?
basic_array(Int sz, RHS const &val)
Construct a 1-dimensional array with the given size and initialize each element to the given scalar v...
static basic_array ones(std::array< Int, Rank > const &shape)
Make a one-initialized array with the given shape.
LayoutPolicy layout_policy_t
Type of the memory layout policy (see Layout policies).
constexpr auto stride_order() const noexcept
Get the stride order of the memory layout of the view/array (see nda::idx_map for more details on how...
auto & operator/=(RHS const &rhs) noexcept
Division assignment operator.
auto & operator=(R const &rhs) noexcept
Assignment operator makes a deep copy of a general contiguous range and assigns it to the 1-dimension...
array_iterator< iterator_rank, ValueType, typename AccessorPolicy::template accessor< ValueType >::pointer > iterator
Iterator type of the view/array.
auto as_array_view()
Convert the current array to a view with an 'A' (array) algebra.
auto transpose() const
static basic_array zeros(Ints... is)
Make a zero-initialized array with the given dimensions.
auto indices() const noexcept
Get a range that generates all valid index tuples.
static __inline__ decltype(auto) call(Self &&self, Ts const &...idxs) noexcept(has_no_boundcheck)
Implementation of the function call operator.
ContainerPolicy container_policy_t
Type of the container policy (see Memory policies).
storage_t storage() &&noexcept
Get the data storage of the view/array.
basic_array()
Default constructor constructs an empty array with a default constructed memory handle and layout.
bool is_empty() const noexcept
basic_array & operator=(basic_array const &)=default
Default copy assignment copies the memory handle and layout from the right hand side array.
basic_array & operator=(RHS const &rhs) noexcept
Assignment operator assigns a scalar to the array.
basic_array & operator=(basic_array< ValueType, Rank, LayoutPolicy, A, CP > const &rhs)
Assignment operator makes a deep copy of another array with a different algebra and/or container poli...
basic_array(basic_array const &a)=default
Default copy constructor copies the memory handle and layout.
basic_array(std::initializer_list< std::initializer_list< std::initializer_list< ValueType > > > const &l3)
Construct a 3-dimensional array from a triple nested initializer list.
iterator begin() noexcept
Get an iterator to the beginning of the view/array.
basic_array(layout_t const &layout)
Construct an array with the given memory layout.
static basic_array rand(Ints... is)
Make a random-initialized array with the given dimensions.
basic_array(layout_t const &layout, storage_t &&storage) noexcept
Construct an array with the given memory layout and with an existing memory handle/storage.
auto & operator-=(RHS const &rhs) noexcept
Subtraction assignment operator.
const_iterator end() const noexcept
Get a const iterator to the end of the view/array.
basic_array(basic_array &&)=default
Default move constructor moves the memory handle and layout.
basic_array(std::array< Int, Rank > const &shape)
Construct an array with the given shape.
const_iterator cend() const noexcept
Get a const iterator to the end of the view/array.
auto & operator*=(RHS const &rhs) noexcept
Multiplication assignment operator.
basic_array & operator=(basic_array &&)=default
Default move assignment moves the memory handle and layout from the right hand side array.
static basic_array zeros(std::array< Int, Rank > const &shape)
Make a zero-initialized array with the given shape.
array_iterator< iterator_rank, ValueType const, typename AccessorPolicy::template accessor< ValueType >::pointer > const_iterator
Const iterator type of the view/array.
iterator end() noexcept
Get an iterator to the end of the view/array.
ValueType value_type
Type of the values in the array (can not be const).
static basic_array rand(std::array< Int, Rank > const &shape)
Make a random-initialized array with the given shape.
Check if a given type satisfies the memory array concept.
Definition concepts.hpp:248
Check if a given type is either an arithmetic or complex type.
Definition concepts.hpp:108
Provides concepts for the nda library.
Provides a custom runtime error class and macros to assert conditions and throw exceptions.
Provides for_each functions for multi-dimensional arrays/views.
auto rand(std::array< Int, Rank > const &shape)
Make an array of the given shape and initialize it with random values from the uniform distribution o...
auto permuted_indices_view(A &&a)
Permute the indices/dimensions of an nda::basic_array or nda::basic_array_view.
auto zeros(std::array< Int, Rank > const &shape)
Make an array of the given shape on the given address space and zero-initialize it.
auto ones(std::array< Int, Rank > const &shape)
Make an array of the given shape and one-initialize it.
mapped< F > map(F f)
Create a lazy function call expression on arrays/views.
Definition map.hpp:202
basic_array_view< ValueType const, Rank, Layout, 'A', default_accessor, borrowed<> > array_const_view
Same as nda::array_view except for const value types.
basic_array< ValueType, Rank, Layout, 'A', ContainerPolicy > array
Alias template of an nda::basic_array with an 'A' algebra.
constexpr bool have_same_value_type_v
Constexpr variable that is true if all types in As have the same value type as A0.
Definition traits.hpp:185
auto make_expr_call(F &&f, Args &&...args)
Create a function call expression from a callable object and a list of arguments.
Definition make_lazy.hpp:63
constexpr bool is_any_lazy
Constexpr variable that is true if any of the given types is lazy.
Definition utils.hpp:145
constexpr bool ellipsis_is_present
Constexpr variable that is true if the parameter pack Args contains an nda::ellipsis.
Definition range.hpp:56
constexpr bool has_contiguous(layout_prop_e lp)
Checks if a layout property has the contiguous property.
Definition traits.hpp:271
constexpr bool has_strided_1d(layout_prop_e lp)
Checks if a layout property has the strided_1d property.
Definition traits.hpp:255
__inline__ void for_each(std::array< Int, R > const &shape, F &&f)
Loop over all possible index values of a given shape and apply a function to them.
Definition for_each.hpp:116
constexpr bool has_layout_strided_1d
Constexpr variable that is true if type A has the strided_1d nda::layout_prop_e guarantee.
Definition traits.hpp:323
auto get_block_layout(A const &a)
Check if a given nda::MemoryArray has a block-strided layout.
constexpr layout_info_t get_layout_info
Constexpr variable that specifies the nda::layout_info_t of type A.
Definition traits.hpp:310
constexpr bool has_contiguous_layout
Constexpr variable that is true if type A has the contiguous nda::layout_prop_e guarantee.
Definition traits.hpp:319
static constexpr bool on_device
Constexpr variable that is true if all given types have a Device address space.
static constexpr AddressSpace get_addr_space
Variable template providing the address space for different types.
static constexpr bool on_host
Constexpr variable that is true if all given types have a Host address space.
void memcpy2D(void *dest, size_t dpitch, const void *src, size_t spitch, size_t width, size_t height)
Call CUDA's cudaMemcpy2D function or simulate its behavior on the Host based on the given address spa...
Definition memcpy.hpp:73
static constexpr do_not_initialize_t do_not_initialize
Instance of nda::mem::do_not_initialize_t.
Definition handle.hpp:56
static constexpr init_zero_t init_zero
Instance of nda::mem::init_zero_t.
Definition handle.hpp:62
constexpr uint64_t encode(std::array< int, N > const &a)
Encode a std::array<int, N> in a uint64_t.
constexpr std::array< T, N > apply(std::array< Int, N > const &p, std::array< T, N > const &a)
Apply a permutation to a std::array.
constexpr std::array< T, R+1 > front_append(std::array< T, R > const &a, U const &x)
Make a new std::array by prepending one element at the front to an existing std::array.
Definition array.hpp:222
constexpr std::array< T, R > make_std_array(std::array< U, R > const &a)
Convert a std::array with value type U to a std::array with value type T.
Definition array.hpp:171
constexpr bool is_complex_v
Constexpr variable that is true if type T is a std::complex type.
Definition traits.hpp:64
static constexpr bool always_false
Constexpr variable that is always false regardless of the types in Ts (used to trigger static_assert)...
Definition traits.hpp:60
constexpr bool is_scalar_for_v
Constexpr variable used to check requirements when initializing an nda::basic_array or nda::basic_arr...
Definition traits.hpp:82
constexpr bool is_scalar_v
Constexpr variable that is true if type S is a scalar type, i.e. arithmetic or complex.
Definition traits.hpp:68
constexpr bool is_scalar_or_convertible_v
Constexpr variable that is true if type S is a scalar type (see nda::is_scalar_v) or if a std::comple...
Definition traits.hpp:75
Provides an iterator for nda::basic_array and nda::basic_array_view types.
Provides functions to transform the memory layout of an nda::basic_array or nda::basic_array_view.
Macros used in the nda library.
Defines various memory handling policies.
Provides a generic memcpy and memcpy2D function for different address spaces.
Provides utilities to work with permutations and to compactly encode/decode std::array objects.
Includes the itertools header and provides some additional utilities.
A small wrapper around a single long integer to be used as a linear index.
Definition traits.hpp:332
Memory policy using an nda::mem::handle_borrowed.
Definition policies.hpp:97
Default accessor for various array and view types.
Definition accessors.hpp:25
Tag used in constructors to indicate that the memory should be initialized to zero.
Definition handle.hpp:59
Provides type traits for the nda library.