|
TRIQS/nda 1.3.0
Multi-dimensional array library for C++
|
#include "../basic_array.hpp"#include "../blas/tools.hpp"#include "../concepts.hpp"#include "../declarations.hpp"#include "../exceptions.hpp"#include "../lapack/syev.hpp"#include "../lapack/sygv.hpp"#include "../lapack/heev.hpp"#include "../lapack/hegv.hpp"#include "../layout/policies.hpp"#include "../macros.hpp"#include "../matrix_functions.hpp"#include "../mem/address_space.hpp"#include "../traits.hpp"#include <complex>#include <type_traits>#include <utility>Provides functions to solve (generalized) eigenvalue problems with a symmetric/hermitian matrices.
Definition in file eigh.hpp.
Go to the source code of this file.
Functions | |
| template<Matrix A> requires (Scalar<get_value_t<A>>) | |
| auto | nda::linalg::eigh (A const &a) |
| Compute the eigenvalues and eigenvectors of a real symmetric or complex hermitian matrix. | |
| template<Matrix A, Matrix B> requires (Scalar<get_value_t<A>> and Scalar<get_value_t<B>>) | |
| auto | nda::linalg::eigh (A const &a, B const &b, int itype=1) |
| Compute the eigenvalues and eigenvectors of a generalized real symmetric-definite or complex hermitian-definite eigenvalue problem. | |
| template<MemoryMatrix A> requires (nda::mem::have_host_compatible_addr_space<A> and is_blas_lapack_v<get_value_t<A>> and nda::blas::has_F_layout<A>) | |
| auto | nda::linalg::eigh_in_place (A &&a) |
| Compute the eigenvalues and eigenvectors of a real symmetric or complex hermitian matrix. | |
| template<MemoryMatrix A, MemoryMatrix B> requires (nda::mem::have_host_compatible_addr_space<A, B> and is_blas_lapack_v<get_value_t<A>> and have_same_value_type_v<A, B> and nda::blas::has_F_layout<A> and nda::blas::has_F_layout<B>) | |
| auto | nda::linalg::eigh_in_place (A &&a, B &&b, int itype=1) |
| Compute the eigenvalues and eigenvectors of a generalized real symmetric-definite or complex hermitian-definite eigenvalue problem. | |
| template<Matrix A> requires (Scalar<get_value_t<A>>) | |
| auto | nda::linalg::eigvalsh (A const &a) |
| Compute the eigenvalues of a real symmetric or complex hermitian matrix. | |
| template<Matrix A, Matrix B> requires (Scalar<get_value_t<A>> and Scalar<get_value_t<B>>) | |
| auto | nda::linalg::eigvalsh (A const &a, B const &b, int itype=1) |
| Compute the eigenvalues of a generalized real symmetric-definite or complex hermitian-definite eigenvalue problem. | |
| template<MemoryMatrix A> requires (nda::mem::have_host_compatible_addr_space<A> and is_blas_lapack_v<get_value_t<A>> and nda::blas::has_F_layout<A>) | |
| auto | nda::linalg::eigvalsh_in_place (A &&a) |
| Compute the eigenvalues of a real symmetric or complex hermitian matrix. | |
| template<MemoryMatrix A, MemoryMatrix B> requires (nda::mem::have_host_compatible_addr_space<A, B> and is_blas_lapack_v<get_value_t<A>> and have_same_value_type_v<A, B> and nda::blas::has_F_layout<A> and nda::blas::has_F_layout<B>) | |
| auto | nda::linalg::eigvalsh_in_place (A &&a, B &&b, int itype=1) |
| Compute the eigenvalues of a generalized real symmetric-definite or complex hermitian-definite eigenvalue problem. | |