triqs_tprf::lattice_dyson_g0_wk

#include <triqs_tprf.hpp>

Synopsis

  1. g_wk_t lattice_dyson_g0_wk (double mu, e_k_cvt e_k, mesh::imfreq mesh)
  2. g_Dwk_t lattice_dyson_g0_wk (double mu, e_k_cvt e_k, mesh::dlr_imfreq mesh)

Documentation

1) Construct a non-interacting Matsubara frequency lattice Green’s function \(G^{(0)}_{a\bar{b}}(i\omega_n, \mathbf{k})\)

Computes

\[G^{(0)}_{a\bar{b}}(i\omega_n, \mathbf{k}) = \left[ (i\omega_n + \mu ) \cdot \mathbf{1} - \epsilon(\mathbf{k}) \right]^{-1}_{a\bar{b}},\]

using a discretized dispersion \(\epsilon_{\bar{a}b}(\mathbf{k})\), chemical potential \(\mu\), and a Matsubara frequency Green’s function mesh.

2) Construct a non-interacting Matsubara frequency lattice Green’s function \(G^{(0)}_{a\bar{b}}(i\omega_n, \mathbf{k})\)

Computes

\[G^{(0)}_{a\bar{b}}(i\omega_n, \mathbf{k}) = \left[ (i\omega_n + \mu ) \cdot \mathbf{1} - \epsilon(\mathbf{k}) \right]^{-1}_{a\bar{b}},\]

using a discretized dispersion \(\epsilon_{\bar{a}b}(\mathbf{k})\), chemical potential \(\mu\), and a Matsubara frequency Green’s function mesh.

Parameters

  • mu chemical potential \(\mu\)

  • e_k discretized lattice dispersion \(\epsilon_{\bar{a}b}(\mathbf{k})\)

  • mesh imaginary frequency mesh

Returns

Matsubara frequency lattice Green’s function \(G^{(0)}_{a\bar{b}}(i\omega_n, \mathbf{k})\)