Vertex functions

Note

This notation follows closely [Ayral, Parcollet, PRB 94, 075159 (2016)] with the exception that \(PH\) and \(\bar{PH}\) are interchanged.

Fully reducible vertex \(F\)

The fully recucible vertex function \(F(a\bar{a}b\bar{b})\) is defined as the amputation of the connected two-particle Green’s function \(G^{(2)}_c\) by four single-particle Green’s functions \(G\), one for each leg.

\[G(a\bar{a}) G(b\bar{b}) F(a\bar{b}c\bar{d}) G(c\bar{c}) G(d\bar{d}) \equiv G^{(2)}_c(\bar{a}b\bar{c}d)\]

Bethe-Salpeter equations for the fully reducible vertex \(F\)

The Bethe-Salpeter equations for the fully reducible vertex \(F\) is defined for any given channel \(r\) as

\[F = \Gamma^{r} + \Gamma^{r} \chi_0^r F\]

The possible pairings of indices in the right-hand side product produces three non-equivalent equations labeled \(r \in \{ PH, \bar{PH}, PP\}\) standing for, the particle-hole (\(PH\)), vertical-particle-hole (\(\bar{PH}\)), and particle-particle (\(PP\)) channel, respectively.

Each equation and index pairing is associated with one “channel” within which the \(r\)-channel-irreducible vertex \(\Gamma^r\).

\[F(a\bar{b}c\bar{d}) = \Gamma^{PH}(a\bar{b}c\bar{d}) - \Gamma^{PH}(a\bar{b}u\bar{v}) G(u\bar{u}) G(v\bar{v}) F(v\bar{u}c\bar{d})\]
\[F(a\bar{b}c\bar{d}) = \Gamma^{\bar{PH}}(a\bar{b}c\bar{d}) + \Gamma^{\bar{PH}}(a\bar{u}v\bar{d}) G(u\bar{u}) G(v\bar{v}) F(u\bar{b}c\bar{v})\]
\[F(a\bar{b}c\bar{d}) = \Gamma^{PP}(a\bar{b}c\bar{d}) + \frac{1}{2} \Gamma^{PP}(a\bar{u}c\bar{v}) G(u\bar{u}) G(v\bar{v}) F(v\bar{b}u\bar{d})\]

Collecting the two single-particle Green’s functions into a channel dependent “bare” susceptibility \(\chi^r_0\) the Bethe-Salpeter equations can be expressed as

\[F = \Gamma^r + \Gamma^r \stackrel{r}{*} \chi^r_0 \stackrel{r}{*} F\]

where the channel non-interacting vertex functions \(\chi_0^r\) are defined as

\[\chi_0^{PH}(\bar{a}b\bar{c}d) = G(b\bar{c}) G(d\bar{a}) \, , \quad \big( \chi_0^{PH}(\bar{v}u\bar{u}v) = G(u\bar{u}) G(v\bar{v}) \big)\]
\[\chi_0^{\bar{PH}}(\bar{a}b\bar{c}d) = G(b\bar{a}) G(d\bar{c}) \, , \quad \big( \chi_0^{\bar{PH}}(\bar{u}u\bar{v}v) = G(u\bar{u}) G(v\bar{v}) \big)\]
\[\chi_0^{PP}(\bar{a}b\bar{c}d) = G(d\bar{a}) G(b\bar{c}) \, , \quad \big( \chi_0^{PP}(\bar{u}v\bar{v}u) = G(u\bar{u}) G(v\bar{v}) \big)\]

yielding the Bethe-Salpeter equations expressed fully in two-particle quantities

(1)\[F(a\bar{b}c\bar{d}) = \Gamma^{PH}(a\bar{b}c\bar{d}) - \Gamma^{PH}(a\bar{b}q\bar{p}) \, \chi^{PH}_0(\bar{p}q\bar{r}s) \, F(s\bar{r}c\bar{d})\]
(2)\[F(a\bar{b}c\bar{d}) = \Gamma^{\bar{PH}}(a\bar{b}c\bar{d}) + \Gamma^{\bar{PH}}(a\bar{p}s\bar{d}) \, \chi^{\bar{PH}}_0(\bar{p}q\bar{r}s) \, F(q\bar{b}c\bar{r})\]
(3)\[F(a\bar{b}c\bar{d}) = \Gamma^{PP}(a\bar{b}c\bar{d}) + \frac{1}{2} \Gamma^{PP}(a\bar{p}c\bar{r}) \, \chi^{PP}_0(\bar{p}q\bar{r}s) \, F(q\bar{b}s\bar{d})\]

Note that the notion of the product \(\stackrel{r}{*}\) is dependent on the channel \(r\) and consists of different choices of contracting two indices in Eqs. (1), (2), and (3).

Matsubara frequency parametrization

In a carefully choosen parametrization of Matsubara frequencies, the two-time integrals appearing in the products of the Bethe-Salpeter equations (1), (2), and (3) can be reduced to a single sum over one Matsubara frequency. This is achieved by using a channel dependent three frequency reparametrization that directly imposes total frequency conservation, the forms are

(4)\[\begin{split}\begin{array}{ll} PH: \left\{ \begin{array}{rl} \nu_1 &=& \nu \\ \nu_2 &=& \nu + \omega \\ \nu_3 &=& \nu' + \omega \\ \nu_4 &=& \nu' \end{array} \right. \, , & \quad \bar{PH}: \left\{ \begin{array}{rcl} \nu_1 &=& \nu \\ \nu_2 &=& \nu'\\ \nu_3 &=& \nu' + \omega\\ \nu_4 &=& \nu + \omega \end{array}\right. \, , \quad \\ \\ PP: \left\{ \begin{array}{rcl} \nu_1 &=& \nu \\ \nu_2 &=& \nu' \\ \nu_3 &=& \omega - \nu \\ \nu_4 &=& \omega - \nu' \end{array}\right. \, , & \quad PPx: \left\{ \begin{array}{rcl} \nu_1 &=& \nu \\ \nu_2 &=& \omega - \nu' \\ \nu_3 &=& \omega - \nu \\ \nu_4 &=& \nu' \end{array}\right. \end{array}\end{split}\]

for the (horizontal) Particle-Hole (\(PH\)) channel, the (vertical) Particle-Hole (\(\bar{PH}\)) channel, the Particle-Particle (\(PP\)) channel, and the Crossed-Particle-Particle (\(PPx\)) channel, respectively.

In terms of imaginary time the channel dependent three frequency representation maps to the follwing pairing of the four imaginary times \(\tau_a\), \(\tau_\bar{b}\), \(\tau_c\), \(\tau_{\bar{d}}\) of a response function \(\chi_{a\bar{b}c\bar{d}}(\tau_a, \tau_{\bar{b}}, \tau_c, \tau_{\bar{d}})\)

\[PH : \, + i\omega (\tau_{\bar{b}} - \tau_c) + i\nu (-\tau_{a} + \tau_{\bar{b}}) + i\nu' (-\tau_{c} + \tau_{\bar{d}})\]
\[\bar{PH} : \, + i\omega (-\tau_{c} + \tau_{\bar{d}}) + i\nu (-\tau_{a} + \tau_{\bar{d}}) + i\nu' (\tau_{\bar{b}} - \tau_{c})\]
\[PP : \, + i\omega (-\tau_{c} + \tau_{\bar{d}}) + i\nu (-\tau_{a} + \tau_{c}) + i\nu' (\tau_{\bar{b}} - \tau_{\bar{d}})\]
\[PPx : \, + i\omega (\tau_{\bar{b}} - \tau_{c}) + i\nu (-\tau_{a} + \tau_{c}) + i\nu' (-\tau_{\bar{b}} + \tau_{\bar{d}})\]

In a general product \(P = \Gamma \stackrel{r}{*} \chi_0\), the total frequency conservation of the components of the product \(\Gamma\) and \(\chi_0\) gives two constraints that when combined gives the total frequency conservation of the product \(P\) and a reduction of the frequency summation of the product from two frequencies to one. This is achieved by using the above global reparametrizations of the four fermionic Matsubara frequencies \(\nu_1 ,\, \nu_2 ,\, \nu_3 ,\, \nu_4\) of every response function \(Q(\nu_1\nu_2\nu_3\nu_4)\) for the particular channel \(r \in \{PH, \bar{PH}, PP\}\) in question.

In order to map the products to matrix products in index and frequency space the following index ordering has to be done

\[PH: \, \chi^{PH}_{a\bar{b}c\bar{d}}(\omega, \nu, nu') = \chi^{PH}_{\{\bar{\nu}, \bar{a}b \},\{ \nu, d\bar{c} \}}(\omega)\]
\[\bar{PH}: \, \chi^{\bar{PH}}_{a\bar{b}c\bar{d}}(\omega, \nu, nu') = \chi^{\bar{PH}}_{\{\bar{\nu}, \bar{a}d \}, \{\nu', b\bar{c} \} }(\omega)\]
\[PP: \, \chi^{PP}_{a\bar{b}c\bar{d}}(\omega, \nu, nu') = \chi^{PP}_{\{ \bar{\nu}, \bar{a}\bar{c} \}, \{ \nu', bd\}} (\omega)\]
\[PPx: \, \chi^{PPx}_{a\bar{b}c\bar{d}}(\omega, \nu, nu') = \chi^{PPx}_{\{ \bar{\nu}, \bar{c}\bar{a} \}, \{ \nu', bd\}} (\omega)\]

The resulting product formulas reads (see separate derivation chapter),

\[P^{PH}_{a\bar{b}\bar{c}d}(\omega, \nu,\nu') = \frac{1}{\beta^2} \sum_{\bar{\nu} u\bar{v}} \Gamma^{PH}_{ \{ \nu, a\bar{b} \},\{ \bar{\nu}, \bar{v}u \}}(\omega) \, \chi^{PH}_{0, \{\bar{\nu}, \bar{v}u \},\{ \nu, d\bar{c} \}}(\omega)\]
\[P^{\bar{PH}}_{ab\bar{c}\bar{d}}(\omega, \nu, \nu') = \frac{1}{\beta^2} \sum_{\bar{\nu}, \bar{u} v} \Gamma^{\bar{PH}}_{\{ \nu, a\bar{d} \}, \{ \bar{\nu}, \bar{u}v \}}(\omega) \, \chi^{\bar{PH}}_{0, \{\bar{\nu}, \bar{u}v \}, \{\nu', b\bar{c} \} }(\omega)\]
\[P^{PP}_{abcd}(\omega, \nu, \nu') = \frac{1}{\beta^2} \sum_{\bar{u} \bar{v}} \sum_{\bar{\nu}} \Gamma^{PP}_{ \{ \nu , ac \}, \{\bar{\nu}, \bar{u}\bar{v} \} } (\omega) \, \chi^{PP}_{0, \{ \bar{\nu}, \bar{u}\bar{v} \}, \{ \nu', bd\}} (\omega)\]
\[P^{PPx}_{abcd}(\omega, \nu, \nu') = \frac{1}{\beta^2} \sum_{\bar{u} \bar{v}} \sum_{\bar{\nu}} \Gamma^{PPx}_{ \{ \nu , ca \}, \{\bar{\nu}, \bar{u}\bar{v} \} } (\omega) \, \chi^{PPx}_{0, \{ \bar{\nu}, \bar{u}\bar{v} \}, \{ \nu', bd\}} (\omega)\]

Derivation: Product relations

Particle-Hole channel (\(PH\))

Consider the PH product

\[\begin{split}P(a\bar{b}\bar{c}d) & = \Gamma^{PH}(a\bar{b}u\bar{v}) \, \chi^{PH}_0(\bar{v}u\bar{c}d) \\ & = \sum_{u\bar{v}} \iint_0^\beta d\tau_{u} d\tau_{\bar{v}} \, \Gamma^{PH}_{a\bar{b}u\bar{v}}(\tau_{a} \tau_{\bar{b}} \tau_{u} \tau_{\bar{v}}) \, \chi^{PH}_{0, \bar{v}u\bar{c}d}(\tau_{\bar{v}} \tau_{u} \tau_{\bar{c}} \tau_{d}).\end{split}\]

Fourier transforming \(\Gamma^{PH}\) and \(\chi^{PH}_0\) and explicitly inserting Kronecker delta functions for the total frequency conservation gives

\[\begin{split}P(a\bar{b}\bar{c}d) & = \frac{1}{\beta^4} \sum \exp \Big[ -i\nu_a \tau_a + i \nu_{\bar{b}} \tau_{\bar{b}} + i \nu_{\bar{c}} \tau_{\bar{c}}- i \nu_{d} \tau_d \Big] \\ & \times \frac{1}{\beta^2} \sum_{u \bar{v}} \sum_{\nu_{u} \nu_{\bar{v}}} \Gamma^{PH}_{a\bar{b}u\bar{v}}(\nu_a \nu_{\bar{b}} \nu_{u} \nu_{\bar{v}}) \, \chi^{PH}_{0, \bar{v}u\bar{c}d}(\nu_{\bar{v}} \nu_u \nu_{\bar{c}} \nu_d) \\ & \times \delta_{\nu_{a} - \nu_{\bar{b}} + \nu_{u} - \nu_{\bar{v}}, 0} \delta_{\nu_{\bar{v}} - \nu_{u} + \nu_{\bar{c}} - \nu_{d}, 0}.\end{split}\]

Inserting the \(PH\) frequency pairing of (4) in this expression fulfills both Kronecker delta functions and reduce the summation by one frequency to

\[\begin{split}P(a\bar{b}\bar{c}d) & = \frac{1}{\beta^4} \sum \exp \Big[ -i\nu \tau_a + i (\nu + \omega) \tau_{\bar{b}} + i (\nu' + \omega) \tau_{\bar{c}} - i \nu' \tau_d \Big] \\ & \times \frac{1}{\beta^2} \sum_{u \bar{v}} \sum_{\bar{\nu}} \Gamma^{PH}_{a\bar{b}u\bar{v}}(\nu, \nu+\omega, \bar{\nu} + \omega, \bar{\nu}) \, \chi^{PH}_{0, \bar{v}u\bar{c}d}(\bar{\nu}, \bar{\nu} + \omega, \nu' + \omega, \nu').\end{split}\]

Using the three frequency notation \(Q(\omega, \nu, \nu') \equiv Q(\nu, \nu+\omega, \nu'+\omega, \nu)\) we get the final product relation

\[\begin{split}P^{PH}_{a\bar{b}\bar{c}d}(\omega, \nu,\nu') & = \frac{1}{\beta^2} \sum_{\bar{\nu} u\bar{v}} \Gamma^{PH}_{a\bar{b}u\bar{v}}(\omega,\nu, \bar{\nu}) \, \chi^{PH}_{0, \bar{v}u\bar{c}d }(\omega,\bar{\nu}, \nu) \\ & = \frac{1}{\beta^2} \sum_{\bar{\nu} u\bar{v}} \Gamma^{PH}_{ \{ \nu, a\bar{b} \},\{ \bar{\nu}, \bar{v}u \}}(\omega) \, \chi^{PH}_{0, \{\bar{\nu}, \bar{v}u \},\{ \nu, d\bar{c} \}}(\omega).\end{split}\]

Note

The right hand side indices has to be permuted in order to make the product a direct matrix multiplication. I.e. the pairing reads

\[P^{PH}_{abcd}(\omega, \nu, \nu') = P^{PH}_{\{\nu, ab \}, \{\nu', dc\}}(\omega).\]

Writing the reversed product \(P = \chi^{PH}_0 * \Gamma^{PH}\) in slightly compressed notation we get

\[\mathcal{F} \big\{ P(\bar{a}bc\bar{d}) \big\} = \frac{1}{\beta^2} \sum_{\bar{u}v} \sum_{\bar{\nu}} \chi^{PH}_{0, \bar{a}b\bar{u}v}(\nu \nu+\omega, \bar{\nu} + \omega, \bar{\nu}) \, \Gamma^{PH}_{v\bar{u}c\bar{d}}(\bar{\nu}, \bar{\nu} + \omega, \nu' + \omega, \nu').\]

where \(\mathcal{F}\{ \cdot \}\) denotes Fourier transformation to four fermionic Matsubara frequency space. Thus, the product with grouped indices becomes

\[\begin{split}P_{\bar{a}bc\bar{d}}(\omega, \nu, \nu') & = \frac{1}{\beta^2} \sum_{\bar{\nu}, \bar{u}v} \chi^{PH}_{0, \bar{a}b\bar{u}v}(\omega, \nu, \bar{\nu}) \, \Gamma^{PH}_{v\bar{u}c\bar{d}}(\omega, \bar{\nu}, \nu') \\ & = \frac{1}{\beta^2} \sum_{\bar{\nu}, \bar{u}v} \chi^{PH}_{0, \{ \nu, \bar{a}b \}, \{\bar{\nu}, v\bar{u} \} }(\omega) \, \Gamma^{PH}_{\{ \bar{\nu} , v\bar{u} \}, \{ \nu', \bar{d}c\}}(\omega)\end{split}\]

which shows that the same index grouping relations hold for both products \(\chi_0^{PH} * \Gamma^{PH}\) and \(\Gamma^{PH} * \chi_0^{PH}\).

Vertical-Particle-Hole channel (\(\bar{PH}\))

The vertical-particle-hole product is defined in the channel’s Bethe-Salpeter equation as

\[\begin{split}P(ab\bar{c}\bar{d}) & = \Gamma^{\bar{PH}}(a\bar{u}v\bar{d}) \, \chi_0^{\bar{PH}}(\bar{u}b\bar{c}v) \\ & = \sum_{\bar{u}v} \iint_0^\beta d\tau_{\bar{u}} d\tau_v \, \Gamma^{\bar{PH}}_{a\bar{u}v\bar{d}}(\tau_a, \tau_{\bar{u}}, \tau_v, \tau_{\bar{d}}) \, \chi^{\bar{PH}}_{0, \bar{u}b\bar{c}v}(\tau_{\bar{u}},\tau_b,\tau_{\bar{c}},\tau_v).\end{split}\]

Fourier expansion gives

\[\begin{split}P(ab\bar{c}\bar{d}) & = \frac{1}{\beta^4} \sum \exp \Big[ -i\nu_a \tau_a + i \nu_{\bar{b}} \tau_{\bar{b}} + i \nu_{\bar{c}} \tau_{\bar{c}} - i \nu_{d} \tau_d \Big] \\ & \times \frac{1}{\beta^2} \sum_{\bar{u} v} \sum_{\nu_{\bar{u}} \nu_{v}} \Gamma^{\bar{PH}}_{a\bar{u}v\bar{d}}(\nu_a \nu_{\bar{u}} \nu_v \nu_{\bar{d}}) \, \chi^{\bar{PH}}_{0, \bar{u}b\bar{c}v}(\nu_{\bar{u}} \nu_b \nu_{\bar{c}} \nu_v) \\ & \times \delta_{\nu_a - \nu_{\bar{u}} + \nu_v - \nu_{\bar{d}}, 0} \delta_{\nu_{\bar{u}} - \nu_b + \nu_{\bar{c}} - \nu_v, 0}.\end{split}\]

Inserting the \(\bar{PH}\) channel frequency parametrization of Eq. (4), gives

\[\begin{split}P(ab\bar{c}\bar{d}) & = \frac{1}{\beta^4} \sum \exp \Big[ -i\nu \tau_a + i \nu' \tau_{\bar{b}} + i (\nu' + \omega) \tau_{\bar{c}} - i (\nu + \omega) \tau_d \Big] \\ & \times \frac{1}{\beta^2} \sum_{\bar{u} v} \sum_{\bar{\nu}} \Gamma^{\bar{PH}}_{a\bar{u}v\bar{d}}(\nu, \bar{\nu}, \bar{\nu} + \omega, \nu + \omega) \, \chi^{\bar{PH}}_{0, \bar{u}b\bar{c}v}(\bar{\nu}, \nu', \nu' + \omega, \bar{\nu} + \omega)\end{split}\]

using \(\bar{PH}\) frequency notation and grouping indices we get

\[\begin{split}P_{ab\bar{c}\bar{d}}(\omega, \nu, \nu') & = \frac{1}{\beta^2} \sum_{\bar{\nu}, \bar{u} v} \Gamma^{\bar{PH}}_{a\bar{u}v\bar{d}}(\omega, \nu, \bar{\nu}) \, \chi^{\bar{PH}}_{0, \bar{u}b\bar{c}v}(\omega, \bar{\nu}, \nu') \\ & = \frac{1}{\beta^2} \sum_{\bar{\nu}, \bar{u} v} \Gamma^{\bar{PH}}_{\{ \nu, a\bar{d} \}, \{ \bar{\nu}, \bar{u}v \}}(\omega) \, \chi^{\bar{PH}}_{0, \{\bar{\nu}, \bar{u}v \}, \{\nu', b\bar{c} \} }(\omega).\end{split}\]

The reversed product \(\chi^{\bar{PH}}_0 * \Gamma^{\bar{PH}}\) can be analysed in the same way and gives the same index pairing.

Particle-Particle channel (\(PP\))

\[\begin{split}P(abcd) & = \Gamma^{PP}(a\bar{u}c\bar{v}) \, \chi^{PP}_0(\bar{u}b\bar{v}d) \\ & = \sum_{\bar{u}\bar{v}} \iint_0^\beta d\tau_{\bar{u}} d\tau_{\bar{v}} \Gamma^{PP}_{a\bar{u}c\bar{v}}(\tau_a, \tau_{\bar{u}}, \tau_c, \tau_{\bar{v}}) \, \chi^{PP}_{0, \bar{u}b\bar{v}d}(\tau_{\bar{u}}, \tau_b, \tau_{\bar{v}}, \tau_d).\end{split}\]

Fourier transform

\[\begin{split}P(abcd) & = \frac{1}{\beta^4} \sum \exp \Big[ -i\nu_a \tau_a - i \nu_{\bar{b}} \tau_{\bar{b}} - i \nu_{\bar{c}} \tau_{\bar{c}} - i \nu_{d} \tau_d \Big] \\ & \times \frac{1}{\beta^2} \sum_{\bar{u} \bar{v}} \sum_{\nu_{\bar{u}} \nu_{\bar{v}}} \Gamma^{PP}_{a\bar{u}c\bar{v}}(\nu_a \nu_{\bar{u}} \nu_c \nu_{\bar{v}}) \, \chi^{PP}_{0, \bar{u}b\bar{v}d}(\nu_{\bar{u}} \nu_b \nu_{\bar{v}} \nu_d) \\ & \times \delta_{\nu_a - \nu_{\bar{u}} + \nu_c - \nu_{\bar{v}}, 0} \delta_{\nu_{\bar{u}} - \nu_b + \nu_{\bar{v}} - \nu_d, 0}.\end{split}\]

Inserting the \(PP\) channel frequency parametrization of Eq. (4) gives

\[\begin{split}P(abcd) & = \frac{1}{\beta^4} \sum \exp \Big[ -i(\nu) \tau_a - i (\nu') \tau_{\bar{b}} - i (\omega - \nu') \tau_{\bar{c}} - i (\omega - \nu') \tau_d \Big] \\ & \times \frac{1}{\beta^2} \sum_{\bar{u} \bar{v}} \sum_{\bar{\nu}} \Gamma^{PP}_{a\bar{u}c\bar{v}} (\nu, \bar{\nu}, \omega - \nu, \omega - \bar{\nu}) \, \chi^{PP}_{0, \bar{u}b\bar{v}d} (\bar{\nu}, \nu', \omega - \bar{\nu}, \omega - \nu').\end{split}\]

Collecting indices

\[\begin{split}P_{abcd}(\omega, \nu, \nu') & = \frac{1}{\beta^2} \sum_{\bar{u} \bar{v}} \sum_{\bar{\nu}} \Gamma^{PP}_{a\bar{u}c\bar{v}} (\omega, \nu, \bar{\nu}) \, \chi^{PP}_{0, \bar{u}b\bar{v}d} (\omega, \bar{\nu}, \nu') \\ & = \frac{1}{\beta^2} \sum_{\bar{u} \bar{v}} \sum_{\bar{\nu}} \Gamma^{PP}_{ \{ \nu , ac \}, \{\bar{\nu}, \bar{u}\bar{v} \} } (\omega) \, \chi^{PP}_{0, \{ \bar{\nu}, \bar{u}\bar{v} \}, \{ \nu', bd\}} (\omega).\end{split}\]

Crossed-Particle-Particle channel (\(PPx\))

\[\begin{split}P(abcd) & = \Gamma^{PPx}(a\bar{u}c\bar{v}) \ \chi^{PPx}_0(\bar{v}b\bar{u}d) \\ & = \sum_{\bar{u}\bar{v}} \iint_0^\beta d\tau_{\bar{u}} d\tau_{\bar{v}} \Gamma^{PPx}_{a\bar{u}c\bar{v}}(\tau_a, \tau_{\bar{u}}, \tau_c, \tau_{\bar{v}}) \, \chi^{PPx}_{0, \bar{v}b\bar{u}d}(\tau_{\bar{v}}, \tau_b, \tau_{\bar{u}}, \tau_d).\end{split}\]

Fourier transform

\[\begin{split}P(abcd) & = \frac{1}{\beta^4} \sum \exp \Big[ -i\nu_a \tau_a - i \nu_{\bar{b}} \tau_{\bar{b}} - i \nu_{\bar{c}} \tau_{\bar{c}} - i \nu_{d} \tau_d \Big] \\ & \times \frac{1}{\beta^2} \sum_{\bar{u} \bar{v}} \sum_{\nu_{\bar{u}} \nu_{\bar{v}}} \Gamma^{PPx}_{a\bar{u}c\bar{v}}(\nu_a \nu_{\bar{u}} \nu_c \nu_{\bar{v}}) \, \chi^{PPx}_{0, \bar{v}b\bar{u}d}(\nu_{\bar{v}} \nu_b \nu_{\bar{u}} \nu_d) \\ & \times \delta_{\nu_a - \nu_{\bar{u}} + \nu_c - \nu_{\bar{v}}, 0} \delta_{\nu_{\bar{v}} - \nu_b + \nu_{\bar{u}} - \nu_d, 0}.\end{split}\]

Inserting the \(PPx\) channel parametrization of Eq. (4) gives

\[\begin{split}\nu_a - \nu_{\bar{u}} + \nu_c - \nu_{\bar{v}} & = \nu - \omega + \bar{\nu} + \omega - \nu - \bar{\nu} & = 0 \\ \nu_{\bar{v}} - \nu_b + \nu_{\bar{u}} - \nu_d & = \bar{\nu} - \omega + \nu' + \omega - \bar{\nu} - \nu' & = 0,\end{split}\]
\[\begin{split}P(abcd) & = \frac{1}{\beta^4} \sum \exp \Big[ -i(\nu) \tau_a - i (\omega - \nu') \tau_{\bar{b}} - i (\omega - \nu) \tau_{\bar{c}} - i (\nu') \tau_d \Big] \\ & \times \frac{1}{\beta^2} \sum_{\bar{u} \bar{v}} \sum_{\bar{\nu}} \Gamma^{PPx}_{a\bar{u}c\bar{v}} (\nu, \omega - \bar{\nu}, \omega - \nu, \bar{\nu}) \, \chi^{PPx}_{0, \bar{u}b\bar{v}d} (\bar{\nu}, \omega - \nu', \omega - \bar{\nu}, \nu').\end{split}\]

Collecting indices

\[\begin{split}P^{PPx}_{abcd}(\omega, \nu, \nu') & = \frac{1}{\beta^2} \sum_{\bar{u} \bar{v}} \sum_{\bar{\nu}} \Gamma^{PP}_{a\bar{u}c\bar{v}} (\omega, \nu, \bar{\nu}) \, \chi^{PP}_{0, \bar{v}b\bar{u}d} (\omega, \bar{\nu}, \nu') \\ & = \frac{1}{\beta^2} \sum_{\bar{u} \bar{v}} \sum_{\bar{\nu}} \Gamma^{PPx}_{ \{ \nu , ca \}, \{\bar{\nu}, \bar{u}\bar{v} \} } (\omega) \, \chi^{PPx}_{0, \{ \bar{\nu}, \bar{u}\bar{v} \}, \{ \nu', bd\}} (\omega).\end{split}\]

Note

The first index is permuted in the grouping, i.e.

\[P^{PPx}_{abcd}(\omega, \nu, \nu') = P^{PPx}_{\{\nu, ca\}, \{ \nu', bd \}}(\omega).\]