triqs_tprf::g0w_sigma
#include <triqs_tprf.hpp>
Synopsis
array<std::complex<double>, 2> g0w_sigma (double mu,double beta,e_k_cvt e_k,chi_k_cvt v_k,mesh::brzone::value_t kpoint) e_k_t g0w_sigma (double mu, double beta, e_k_cvt e_k, chi_k_cvt v_k, mesh::brzone kmesh) e_k_t g0w_sigma (double mu, double beta, e_k_cvt e_k, chi_k_cvt v_k) g_f_t g0w_sigma (double mu,double beta,e_k_cvt e_k,chi_fk_cvt W_fk,chi_k_cvt v_k,double delta,mesh::brzone::value_t kpoint) g_fk_t g0w_sigma (double mu,double beta,e_k_cvt e_k,chi_fk_cvt W_fk,chi_k_cvt v_k,double delta,mesh::brzone kmesh) g_fk_t g0w_sigma (double mu, double beta, e_k_cvt e_k, chi_fk_cvt W_fk, chi_k_cvt v_k, double delta)
Documentation
1) Some documentation
2) Some documentation
3) GW self energy \(\Sigma(\mathbf{k})\) calculator for static interactions
Computes the GW self-energy of a static interaction as the product
\[\Sigma_{ab}(\mathbf{k}) = \frac{-1}{N_k} \sum_{\mathbf{q}} \sum_{l} U_{al}(\mathbf{k}+\mathbf{q}) U^\dagger_{lb}(\mathbf{k}+\mathbf{q}) V_{aabb}(\mathbf{q}) f(\epsilon_{\mathbf{k}+\mathbf{q}, l})\]where the \(U(\mathbf{k})\) matrices are the diagonalizing unitary transform of the matrix valued dispersion relation \(\epsilon_{\bar{a}b}(\mathbf{k})\), i.e.
\[\sum_{\bar{a}b} U^\dagger_{i\bar{a}}(\mathbf{k}) \epsilon_{\bar{a}b}(\mathbf{k}) U_{bj} (\mathbf{k}) = \delta_{ij} \epsilon_{\mathbf{k}, i}\]4) some documentation
5) some documentation
6) Real frequency GW self energy \(\Sigma(\omega, \mathbf{k})\) calculator via the spectral representation
Computes the spectral function of the dynamic part of the screened interaction
\[W^{(spec)}_{ab}(\omega, \mathbf{k}) = \frac{-1}{\pi} \text{Im} \left( W_{aabb}(\omega, \mathbf{k}) - V_{aabb}(\mathbf{k}) \right)\]and constructs the GW self energy via the spectral representation
\[\begin{split}\Sigma_{ab}(\omega, \mathbf{k}) = \frac{-1}{N_k} \sum_{\mathbf{q}} \sum_{l} U_{al}(\mathbf{k}+\mathbf{q}) U^{\dagger}_{lb}(\mathbf{k}+\mathbf{q}) V_{aabb}(\mathbf{q}) f(\epsilon_{\mathbf{k}+\mathbf{q}, l}) \\ + \frac{\delta_{\omega}}{N_k} \sum_{\mathbf{q}} \sum_{\omega'} U_{al}(\mathbf{k}+\mathbf{q}) U^{\dagger}_{lb}(\mathbf{k}+\mathbf{q}) W^{(spec)}_{ab}(\omega', \mathbf{q}) \frac{n_B(\omega') + f(\epsilon_{\mathbf{k}+\mathbf{q}, l})}{\omega + i\delta + \omega' - \epsilon_{\mathbf{k}+\mathbf{q}, l} + \mu}\end{split}\]where \(\delta_{\omega}\) is the real-frequency mesh spacing and the \(U(\mathbf{k})\) matrices are the diagonalizing unitary transform of the matrix valued dispersion relation \(\epsilon_{\bar{a}b}(\mathbf{k})\), i.e.
\[\sum_{\bar{a}b} U^\dagger_{i\bar{a}}(\mathbf{k}) \epsilon_{\bar{a}b}(\mathbf{k}) U_{bj} (\mathbf{k}) = \delta_{ij} \epsilon_{\mathbf{k}, i}\]
Parameters
mu chemical potential \(\mu\)
beta inverse temperature
e_k discretized lattice dispersion \(\epsilon_{\bar{a}b}(\mathbf{k})\)
V_k bare interaction \(V_{abcd}(\mathbf{k})\)
W_fk fully screened interaction \(W_{abcd}(\omega, \mathbf{k})\)
delta broadening \(\delta\)
Returns
static GW self-energy \(\Sigma_{ab}(\mathbf{k})\)