Source code for dmft_tools.initial_self_energies

################################################################################
#
# solid_dmft - A versatile python wrapper to perform DFT+DMFT calculations
#              utilizing the TRIQS software library
#
# Copyright (C) 2018-2020, ETH Zurich
# Copyright (C) 2021, The Simons Foundation
#      authors: A. Hampel, M. Merkel, and S. Beck
#
# solid_dmft is free software: you can redistribute it and/or modify it under the
# terms of the GNU General Public License as published by the Free Software
# Foundation, either version 3 of the License, or (at your option) any later
# version.
#
# solid_dmft is distributed in the hope that it will be useful, but WITHOUT ANY
# WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
# PARTICULAR PURPOSE. See the GNU General Public License for more details.

# You should have received a copy of the GNU General Public License along with
# solid_dmft (in the file COPYING.txt in this directory). If not, see
# <http://www.gnu.org/licenses/>.
#
################################################################################

"""
Contains all functions related to determining the double counting and the
initial self-energy.
"""

# system
from copy import deepcopy
import numpy as np

# triqs
from h5 import HDFArchive
import triqs.utility.mpi as mpi
from triqs.gf import BlockGf, Gf, make_gf_imfreq, MeshDLRImFreq, make_gf_dlr, MeshReFreq
import itertools

[docs] def calculate_double_counting(sum_k, density_matrix, general_params, gw_params, advanced_params, solver_type_per_imp, G_loc_all=None): """ Calculates the double counting, including all manipulations from advanced_params. Parameters ---------- sum_k : SumkDFT object density_matrix : list of gf_struct_solver like List of density matrices for all inequivalent shells general_params : dict general parameters as a dict gw_params : dict GW parameters as a dict advanced_params : dict advanced parameters as a dict solver_type_per_imp : list of str List of solver types for each impurity G_loc_all : list of BlockGf (Green's function) objects, optional List of local Green's functions for all shells Returns -------- sum_k : SumKDFT object The SumKDFT object containing the updated double counting """ mpi.report('\n*** DC determination ***') # copy the density matrix to not change it density_matrix_DC = deepcopy(density_matrix) # TODO: suppress print when reseting DC to zero # and add a final print of the DC pot/energy at the end of the whole function icrsh_hartree = [icrsh for icrsh, type in enumerate(solver_type_per_imp) if type == 'hartree'] icrsh_not_hartree = [icrsh for icrsh, type in enumerate(solver_type_per_imp) if type != 'hartree'] if icrsh_hartree: mpi.report(f'\nSOLID_DMFT: Hartree solver for impurities {icrsh_hartree} detected. ' 'Zeroing out the DC correction there, which gets computed at the solver level.') for icrsh in icrsh_hartree: sum_k.calc_dc(density_matrix_DC[icrsh], orb=icrsh, use_dc_value=0.0) # Sets the DC and exits the function if advanced_params['dc_fixed_value'] is specified if advanced_params['dc_fixed_value'] is not None: for icrsh in icrsh_not_hartree: sum_k.calc_dc(density_matrix_DC[icrsh], orb=icrsh, use_dc_value=advanced_params['dc_fixed_value']) return sum_k for icrsh in icrsh_not_hartree: if advanced_params['dc_fixed_occ'][icrsh] is not None: mpi.report(f'Fixing occupation for DC for imp {icrsh} to n={advanced_params["dc_fixed_occ"][icrsh]:.4f}') n_orb = sum_k.corr_shells[icrsh]['dim'] # we need to handover a matrix to calc_dc so calc occ per orb per spin channel orb_occ = advanced_params['dc_fixed_occ'][icrsh]/(n_orb*2) # setting occ of each diag orb element to calc value for inner in density_matrix_DC[icrsh].values(): np.fill_diagonal(inner, orb_occ+0.0j) # The regular way: calculates the DC based on U, J and the dc_type for icrsh in icrsh_not_hartree: if general_params['dc_type'][icrsh] == 3: # this is FLL for eg orbitals only as done in Seth PRB 96 205139 2017 eq 10 # this setting for U and J is reasonable as it is in the spirit of F0 and Javg # for the 5 orb case mpi.report('Doing FLL DC for eg orbitals only with Uavg=U-J and Javg=2*J') Uavg = advanced_params['dc_U'][icrsh] - advanced_params['dc_J'][icrsh] Javg = 2*advanced_params['dc_J'][icrsh] sum_k.calc_dc(density_matrix_DC[icrsh], U_interact=Uavg, J_hund=Javg, orb=icrsh, use_dc_formula=0) # DC calculated for dynamic interaction from AIMBES elif general_params['dc_type'][icrsh] in ('crpa_static', 'crpa_static_qp', 'crpa_dynamic'): from solid_dmft.gw_embedding.bdft_converter import calc_Sigma_DC_gw, calc_W_from_Gloc, convert_gw_output mpi.report('\n*** Using dynamic interactions to calculate DC ***') # lad GW input from h5 file if 'Uloc_dlr' not in gw_params: if mpi.is_master_node(): gw_data, ir_kernel = convert_gw_output( general_params['jobname'] + '/' + general_params['seedname'] + '.h5', gw_params['h5_file'], it_1e = gw_params['it_1e'], it_2e = gw_params['it_2e'], ha_ev_conv = True ) gw_params.update(gw_data) gw_params = mpi.bcast(gw_params) mesh = MeshDLRImFreq(sum_k.mesh.beta, 'Fermion', sum_k.mesh(sum_k.mesh.last_index()).value.imag, gw_params['Uloc_dlr'][icrsh].mesh.eps, symmetrize=True) Gloc_dlr_iw = sum_k.block_structure.create_gf(ish=icrsh, space='sumk', mesh=mesh) G_loc_sumk = sum_k.block_structure.convert_gf(G_loc_all[icrsh], ish_from=icrsh, space_from='solver', space_to='sumk') for block, gf in Gloc_dlr_iw: for iw in gf.mesh: gf[iw] = G_loc_sumk[block](iw) Gloc_dlr = make_gf_dlr(Gloc_dlr_iw) U_matrix_rot = {'up' : gw_params['U_matrix_rot'][icrsh], 'down' : gw_params['U_matrix_rot'][icrsh]} # there are two options here evaluate DC from Wloc_GW and Uloc # or Wloc_GG and Uloc (here GG means Wloc calculated via Gloc*Gloc) Wloc_dlr = calc_W_from_Gloc(Gloc_dlr, U_matrix_rot) Sig_DC_dlr, Sig_DC_hartree, Sig_DC_exchange = calc_Sigma_DC_gw(Wloc_dlr, Gloc_dlr, U_matrix_rot) Sig_DC_iw = make_gf_imfreq(Sig_DC_dlr, n_iw=len(sum_k.mesh)//2) Sig_DC_iw_dyn = Sig_DC_iw.copy() for block, gf in Sig_DC_iw: for iorb, jorb in itertools.product(range(gf.target_shape[0]), repeat=2): # create full freq dependent DC gf[iorb, jorb] += Sig_DC_hartree[block][iorb, jorb].real + Sig_DC_exchange[block][iorb, jorb].real # dynamic interaction but static DC if general_params['dc_type'][icrsh] == 'crpa_static': # for the static DC form we follow doi.org/10.1103/PhysRevB.95.155104 Eq 31 # Sig_DC = Sig_DC_hartree + Sig_DC_exchange for block, gf in Sig_DC_iw: Sig_DC_hartree[block] += Sig_DC_exchange[block] mpi.report(f'DC for imp {icrsh} block {block} via Σ_dc_HF + Σ_dc_ex:') mpi.report(Sig_DC_hartree[block].real) # transform dc to sumk blocks sum_k.dc_imp[icrsh] = Sig_DC_hartree elif general_params['dc_type'][icrsh] == 'crpa_static_qp': # for the static DC on top of GW we follow doi.org/10.1103/PhysRevB.95.155104 Eq 31 # Sig_DC = Sig_DC_hartree + Sig_DC_exchange + Sig_DC_iw(0) mesh_w = MeshReFreq(window=(-0.5,0.5), n_w=101) Sig_DC_w = sum_k.block_structure.create_gf(ish=icrsh, space='sumk', mesh=mesh_w) for block, gf in Sig_DC_w: gf.set_from_pade(Sig_DC_iw[block], n_points=len(sum_k.mesh)//10, freq_offset=0.0001) Sig_DC_hartree[block] = 0.5*(Sig_DC_w[block](0.0) + Sig_DC_w[block](0.0).conj().T).real mpi.report(f'DC for imp {icrsh} block {block} via Σ_dc_HF + Σ_dc_ex:') mpi.report(Sig_DC_hartree[block].real) # transform dc to sumk blocks sum_k.dc_imp[icrsh] = Sig_DC_hartree elif general_params['dc_type'][icrsh] == 'crpa_dynamic': for block, gf in Sig_DC_iw: mpi.report(f'Full dynamic DC from cRPA for imp {icrsh} block {block} at iw_n=0:') mpi.report(gf(0).real) mpi.report(f'Full dynamic DC from cRPA for imp {icrsh} block {block} at iw_n=n:') mpi.report(gf.data[-1,:,:].real) Sig_DC_hartree[block] += Sig_DC_exchange[block] # sum_k.dc_imp stores the sumk block structure version sum_k.dc_imp[icrsh] = Sig_DC_hartree # the dynamic part of DC is stored in different object sum_k.dc_imp_dyn[icrsh] = Sig_DC_iw_dyn else: mpi.report(f'\nCalculating standard DC for impurity {icrsh} with U={advanced_params["dc_U"][icrsh]} and J={advanced_params["dc_J"][icrsh]}') sum_k.calc_dc(density_matrix_DC[icrsh], U_interact=advanced_params['dc_U'][icrsh], J_hund=advanced_params['dc_J'][icrsh], orb=icrsh, use_dc_formula=general_params['dc_type'][icrsh]) # for the fixed DC according to https://doi.org/10.1103/PhysRevB.90.075136 # dc_imp is calculated with fixed occ but dc_energ is calculated with given n if advanced_params['dc_nominal']: if 'Hartree' in solver_type_per_imp: raise NotImplementedError('dc_nominal not implemented in presence of Hartree solver') mpi.report('\ncalculating DC energy with fixed DC potential from above\n' + ' for the original density matrix doi.org/10.1103/PhysRevB.90.075136\n' + ' aka nominal DC') dc_imp = deepcopy(sum_k.dc_imp) dc_new_en = deepcopy(sum_k.dc_energ) for ish in range(sum_k.n_corr_shells): n_DC = 0.0 for value in density_matrix[sum_k.corr_to_inequiv[ish]].values(): n_DC += np.trace(value.real) # calculate new DC_energ as n*V_DC # average over blocks in case blocks have different imp dc_new_en[ish] = 0.0 for spin, dc_per_spin in dc_imp[ish].items(): # assuming that the DC potential is the same for all orbitals # dc_per_spin is a list for each block containing on the diag # elements the DC potential for the self-energy correction dc_new_en[ish] += n_DC * dc_per_spin[0][0] dc_new_en[ish] = dc_new_en[ish] / len(dc_imp[ish]) sum_k.set_dc(dc_imp, dc_new_en) # Print new DC values mpi.report('\nFixed occ, new DC values:') for icrsh, (dc_per_shell, energy_per_shell) in enumerate(zip(dc_imp, dc_new_en)): for spin, dc_per_spin in dc_per_shell.items(): mpi.report('DC for shell {} and block {} = {}'.format(icrsh, spin, dc_per_spin[0][0])) mpi.report('DC energy for shell {} = {}'.format(icrsh, energy_per_shell)) # Rescales DC if advanced_params['dc_factor'] is given if advanced_params['dc_factor'] is not None: # Here, no check for Hartree since its DC is 0 and the scaling doesn't change that rescaled_dc_imp = [{spin: advanced_params['dc_factor'] * dc_per_spin for spin, dc_per_spin in dc_per_shell.items()} for dc_per_shell in sum_k.dc_imp] rescaled_dc_energy = [advanced_params['dc_factor'] * energy_per_shell for energy_per_shell in sum_k.dc_energ] sum_k.set_dc(rescaled_dc_imp, rescaled_dc_energy) # Print new DC values mpi.report('\nRescaled DC, new DC values:') for icrsh, (dc_per_shell, energy_per_shell) in enumerate(zip(rescaled_dc_imp, rescaled_dc_energy)): for spin, dc_per_spin in dc_per_shell.items(): mpi.report('DC for shell {} and block {} = {}'.format(icrsh, spin, dc_per_spin[0][0])) mpi.report('DC energy for shell {} = {}'.format(icrsh, energy_per_shell)) if advanced_params['dc_orb_shift'] is not None: if 'Hartree' in solver_type_per_imp: raise NotImplementedError('dc_orb_shift not implemented in presence of Hartree solver') mpi.report('adding an extra orbital dependent shift per impurity') tot_norb = 0 dc_orb_shift = [] dc_orb_shift_orig = deepcopy(advanced_params['dc_orb_shift']) for icrsh in range(sum_k.n_inequiv_shells): tot_norb += sum_k.corr_shells[icrsh]['dim'] dc_orb_shift.append(dc_orb_shift_orig[:sum_k.corr_shells[icrsh]['dim']]) del dc_orb_shift_orig[:sum_k.corr_shells[icrsh]['dim']] dc_orb_shift = np.array(dc_orb_shift) dc = [] for icrsh in range(sum_k.n_inequiv_shells): mpi.report(f'shift on imp {icrsh}: {dc_orb_shift[icrsh,:]}') dc.append({}) for spin, dc_per_spin in sum_k.dc_imp[sum_k.inequiv_to_corr[icrsh]].items(): dc[icrsh][spin] = dc_per_spin + np.diag(dc_orb_shift[icrsh,:]) for ish in range(sum_k.n_corr_shells): sum_k.dc_imp[ish] = dc[sum_k.corr_to_inequiv[ish]] return sum_k
def _load_sigma_from_h5(h5_archive, iteration): """ Reads impurity self-energy for all impurities from file and returns them as a list Parameters ---------- h5_archive : HDFArchive HDFArchive to read from iteration : int at which iteration will sigma be loaded Returns -------- self_energies : list of green functions dc_imp : numpy array DC potentials dc_energy : numpy array DC energies per impurity density_matrix : numpy arrays Density matrix from the previous self-energy """ internal_path = 'DMFT_results/' internal_path += 'last_iter' if iteration == -1 else 'it_{}'.format(iteration) with HDFArchive(h5_archive, 'r') as ar: n_inequiv_shells = ar['dft_input']['n_inequiv_shells'] # Loads previous self-energies and DC self_energies = [ar[internal_path]['Sigma_freq_{}'.format(iineq)] for iineq in range(n_inequiv_shells)] last_g0 = [ar[internal_path]['G0_freq_{}'.format(iineq)] for iineq in range(n_inequiv_shells)] dc_imp = ar[internal_path]['DC_pot'] dc_energy = ar[internal_path]['DC_energ'] # Loads density_matrix to recalculate DC if dc_dmft density_matrix = ar[internal_path]['dens_mat_post'] print('Loaded Sigma_imp0...imp{} '.format(n_inequiv_shells-1) + ('at last it ' if iteration == -1 else 'at it {} '.format(iteration))) return self_energies, dc_imp, dc_energy, last_g0, density_matrix def _sumk_sigma_to_solver_struct(sum_k, start_sigma): """ Extracts the local Sigma. Copied from SumkDFT.extract_G_loc, version 2.1.x. Parameters ---------- sum_k : SumkDFT object Sumk object with the information about the correct block structure start_sigma : list of BlockGf (Green's function) objects List of Sigmas in sum_k block structure that are to be converted. Returns ------- Sigma_inequiv : list of BlockGf (Green's function) objects List of Sigmas that can be used to initialize the solver """ Sigma_local = [start_sigma[icrsh].copy() for icrsh in range(sum_k.n_corr_shells)] Sigma_inequiv = [BlockGf(name_block_generator=[(block, Gf(mesh=Sigma_local[0].mesh, target_shape=(dim, dim))) for block, dim in sum_k.gf_struct_solver[ish].items()], make_copies=False) for ish in range(sum_k.n_inequiv_shells)] # G_loc is rotated to the local coordinate system if sum_k.use_rotations: for icrsh in range(sum_k.n_corr_shells): for bname, gf in Sigma_local[icrsh]: Sigma_local[icrsh][bname] << sum_k.rotloc( icrsh, gf, direction='toLocal') # transform to CTQMC blocks for ish in range(sum_k.n_inequiv_shells): for block, dim in sum_k.gf_struct_solver[ish].items(): for ind1 in range(dim): for ind2 in range(dim): block_sumk, ind1_sumk = sum_k.solver_to_sumk[ish][(block, ind1)] block_sumk, ind2_sumk = sum_k.solver_to_sumk[ish][(block, ind2)] Sigma_inequiv[ish][block][ind1, ind2] << Sigma_local[ sum_k.inequiv_to_corr[ish]][block_sumk][ind1_sumk, ind2_sumk] # return only the inequivalent shells return Sigma_inequiv def _set_loaded_sigma(sum_k, loaded_sigma, loaded_dc_imp, general_params): """ Adjusts for the Hartree shift when loading a self energy Sigma_freq from a previous calculation that was run with a different U, J or double counting. Parameters ---------- sum_k : SumkDFT object Sumk object with the information about the correct block structure loaded_sigma : list of BlockGf (Green's function) objects List of Sigmas loaded from the previous calculation loaded_dc_imp : list of dicts List of dicts containing the loaded DC. Used to adjust the Hartree shift. general_params : dict general parameters as a dict Raises ------ ValueError Raised if the block structure between the loaded and the Sumk DC_imp does not agree. Returns ------- start_sigma : list of BlockGf (Green's function) objects List of Sigmas, loaded Sigma adjusted for the new Hartree term """ # Compares loaded and new double counting if len(loaded_dc_imp) != len(sum_k.dc_imp): raise ValueError('Loaded double counting has a different number of ' + 'correlated shells than current calculation.') has_double_counting_changed = False for loaded_dc_shell, calc_dc_shell in zip(loaded_dc_imp, sum_k.dc_imp): if sorted(loaded_dc_shell.keys()) != sorted(calc_dc_shell.keys()): raise ValueError('Loaded double counting has a different block ' + 'structure than current calculation.') for channel in loaded_dc_shell.keys(): if not np.allclose(loaded_dc_shell[channel], calc_dc_shell[channel], atol=1e-4, rtol=0): has_double_counting_changed = True break # Sets initial Sigma start_sigma = loaded_sigma if not has_double_counting_changed: print('DC remained the same. Using loaded Sigma as initial Sigma.') return start_sigma # Uses the SumkDFT add_dc routine to correctly substract the DC shift sum_k.put_Sigma(start_sigma) calculated_dc_imp = sum_k.dc_imp sum_k.dc_imp = [{channel: np.array(loaded_dc_shell[channel]) - np.array(calc_dc_shell[channel]) for channel in loaded_dc_shell} for calc_dc_shell, loaded_dc_shell in zip(sum_k.dc_imp, loaded_dc_imp)] start_sigma = sum_k.add_dc() start_sigma = _sumk_sigma_to_solver_struct(sum_k, start_sigma) # Prints information on correction of Hartree shift first_block = sorted(key for key, _ in loaded_sigma[0])[0] print('DC changed, initial Sigma is the loaded Sigma with corrected Hartree shift:') print(' Sigma for imp0, block "{}", orbital 0 '.format(first_block) + 'shifted from {:.3f} eV '.format(loaded_sigma[0][first_block].data[0, 0, 0].real) + 'to {:.3f} eV'.format(start_sigma[0][first_block].data[0, 0, 0].real)) # Cleans up sum_k.dc_imp = calculated_dc_imp [sigma_freq.zero() for sigma_freq in sum_k.Sigma_imp] return start_sigma
[docs] def determine_dc_and_initial_sigma(general_params, gw_params, advanced_params, sum_k, archive, iteration_offset, G_loc_all, solvers, solver_type_per_imp): """ Determines the double counting (DC) and the initial Sigma. This can happen in five different ways: * Calculation resumed: use the previous DC and the Sigma of the last complete calculation. * Calculation initialized with load_sigma: use the DC and Sigma from the previous file. If the DC changed (and therefore the Hartree shift), the initial Sigma is adjusted by that. * New calculation, with DC: calculate the DC, then initialize the Sigma as the DC, effectively starting the calculation from the DFT Green's function. Also breaks magnetic symmetry if calculation is magnetic. * New calculation, without DC: Sigma is initialized as 0, starting the calculation from the DFT Green's function. Parameters ---------- general_params : dict general parameters as a dict gw_params : dict GW parameters as a dict advanced_params : dict advanced parameters as a dict sum_k : SumkDFT object Sumk object with the information about the correct block structure archive : HDFArchive the archive of the current calculation iteration_offset : int the iterations done before this calculation G_loc_all : Gf local Green function for all shells solvers : list list of Solver instances Returns ------- sum_k : SumkDFT object the SumkDFT object, updated by the initial Sigma and the DC solvers : list list of Solver instances, updated by the initial Sigma """ start_sigma = None last_g0 = None density_mat_dft = [G_loc_all[iineq].density() for iineq in range(sum_k.n_inequiv_shells)] if mpi.is_master_node(): # Resumes previous calculation if iteration_offset > 0: print('\nFrom previous calculation:', end=' ') start_sigma, sum_k.dc_imp, sum_k.dc_energ, last_g0, _ = _load_sigma_from_h5(archive, -1) if general_params['csc'] and not general_params['dc_dmft']: sum_k = calculate_double_counting(sum_k, density_mat_dft, general_params, gw_params, advanced_params, solver_type_per_imp, G_loc_all) # Loads Sigma from different calculation elif general_params['load_sigma']: print('\nFrom {}:'.format(general_params['path_to_sigma']), end=' ') (loaded_sigma, loaded_dc_imp, _, _, loaded_density_matrix) = _load_sigma_from_h5(general_params['path_to_sigma'], general_params['load_sigma_iter']) # Recalculate double counting in case U, J or DC formula changed if general_params['dc']: if general_params['dc_dmft']: sum_k = calculate_double_counting(sum_k, loaded_density_matrix, general_params, gw_params, advanced_params, solver_type_per_imp, G_loc_all) else: sum_k = calculate_double_counting(sum_k, density_mat_dft, general_params, gw_params, advanced_params, solver_type_per_imp, G_loc_all) start_sigma = _set_loaded_sigma(sum_k, loaded_sigma, loaded_dc_imp, general_params) # Sets DC as Sigma because no initial Sigma given elif general_params['dc']: sum_k = calculate_double_counting(sum_k, density_mat_dft, general_params, gw_params, advanced_params, solver_type_per_imp, G_loc_all) # initialize Sigma from sum_k start_sigma = [sum_k.block_structure.create_gf(ish=iineq, gf_function=Gf, space='solver', mesh=sum_k.mesh) for iineq in range(sum_k.n_inequiv_shells)] for icrsh in range(sum_k.n_inequiv_shells): n_orb = sum_k.corr_shells[icrsh]['dim'] dc_pot = sum_k.block_structure.convert_matrix(sum_k.dc_imp[sum_k.inequiv_to_corr[icrsh]], ish_from=icrsh, space_from='sumk', space_to='solver') if (general_params['magnetic'] and general_params['magmom'] and sum_k.SO == 0): mpi.report(f'\n*** Adding magnetic bias to initial sigma and DC for impurity {icrsh} ***') # if we are doing a magnetic calculation and initial magnetic moments # are set, manipulate the initial sigma accordingly fac = general_params['magmom'][icrsh] # init self energy according to factors in magmoms # if magmom positive the up channel will be favored for spin_channel in sum_k.gf_struct_solver[icrsh].keys(): if 'up' in spin_channel: start_sigma[icrsh][spin_channel] << dc_pot[spin_channel] - fac*np.eye(n_orb) else: start_sigma[icrsh][spin_channel] << dc_pot[spin_channel] + fac*np.eye(n_orb) else: for spin_channel in sum_k.gf_struct_solver[icrsh].keys(): start_sigma[icrsh][spin_channel] << dc_pot[spin_channel] # Sets Sigma to zero because neither initial Sigma nor DC given elif (not general_params['dc'] and general_params['magnetic']): start_sigma = [sum_k.block_structure.create_gf(ish=iineq, gf_function=Gf, space='solver', mesh=sum_k.mesh) for iineq in range(sum_k.n_inequiv_shells)] for icrsh in range(sum_k.n_inequiv_shells): n_orb = sum_k.corr_shells[icrsh]['dim'] if (general_params['magnetic'] and general_params['magmom'] and sum_k.SO == 0): mpi.report(f'\n*** Adding magnetic bias to initial sigma for impurity {icrsh} ***') # if we are doing a magnetic calculation and initial magnetic moments # are set, manipulate the initial sigma accordingly fac = general_params['magmom'][icrsh] # if magmom positive the up channel will be favored for spin_channel in sum_k.gf_struct_solver[icrsh].keys(): if 'up' in spin_channel: start_sigma[icrsh][spin_channel] << -fac*np.eye(n_orb) else: start_sigma[icrsh][spin_channel] << fac*np.eye(n_orb) else: start_sigma = [sum_k.block_structure.create_gf(ish=iineq, gf_function=Gf, space='solver', mesh=sum_k.mesh) for iineq in range(sum_k.n_inequiv_shells)] # Adds random, frequency-independent noise in zeroth iteration to break symmetries if not np.isclose(general_params['noise_level_initial_sigma'], 0) and iteration_offset == 0: if mpi.is_master_node(): for start_sigma_per_imp in start_sigma: for _, block in start_sigma_per_imp: noise = np.random.normal(scale=general_params['noise_level_initial_sigma'], size=block.data.shape[1:]) # Makes the noise hermitian noise = np.broadcast_to(.5 * (noise + noise.T), block.data.shape) block += Gf(indices=block.indices, mesh=block.mesh, data=noise) # bcast everything to other nodes sum_k.dc_imp = mpi.bcast(sum_k.dc_imp) sum_k.dc_energ = mpi.bcast(sum_k.dc_energ) start_sigma = mpi.bcast(start_sigma) last_g0 = mpi.bcast(last_g0) # Loads everything now to the solver for icrsh in range(sum_k.n_inequiv_shells): solvers[icrsh].Sigma_freq = start_sigma[icrsh] if last_g0: solvers[icrsh].G0_freq = last_g0[icrsh] # Updates the sum_k object with the Matsubara self-energy sum_k.put_Sigma([solvers[icrsh].Sigma_freq for icrsh in range(sum_k.n_inequiv_shells)]) # load sigma as first guess in the hartree solver if applicable for icrsh in range(sum_k.n_inequiv_shells): # TODO: # should this be moved to before the solve() call? Having it only here means there is a mismatch # between the mixing at the level of the solver and the sumk (solver mixes always 100%) if solver_type_per_imp[icrsh] == 'hartree': mpi.report(f"SOLID_DMFT: setting first guess hartree solver for impurity {icrsh}") solvers[icrsh].triqs_solver.reinitialize_sigma(start_sigma[icrsh]) return sum_k, solvers