#!/usr/bin/env python3
################################################################################
#
# TRIQS: a Toolbox for Research in Interacting Quantum Systems
#
# Copyright (C) 2016-2018, N. Wentzell
# Copyright (C) 2018-2019, Simons Foundation
# author: N. Wentzell
#
# TRIQS is free software: you can redistribute it and/or modify it under the
# terms of the GNU General Public License as published by the Free Software
# Foundation, either version 3 of the License, or (at your option) any later
# version.
#
# TRIQS is distributed in the hope that it will be useful, but WITHOUT ANY
# WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
# FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
# details.
#
# You should have received a copy of the GNU General Public License along with
# TRIQS. If not, see <http://www.gnu.org/licenses/>.
#
################################################################################
"""
Reads DMFT_ouput observables such as real-frequency Sigma and a Wannier90
TB Hamiltonian to compute spectral properties. It runs in two modes,
either calculating the bandstructure or Fermi slice.
Written by Sophie Beck, 2021-2022
TODO:
- extend to multi impurity systems
- make proper use of rot_mat from DFT_Tools (atm it assumed that wannier_hr and Sigma are written in the same basis)
"""
import matplotlib.pyplot as plt
from matplotlib.ticker import MaxNLocator
from matplotlib.colors import Normalize
from matplotlib import cm
from scipy.optimize import brentq
from scipy.interpolate import interp1d
from scipy.signal import argrelextrema
import numpy as np
import itertools
import skimage.measure
from warnings import warn
from h5 import HDFArchive
from triqs.gf import BlockGf, MeshReFreq, Gf
from triqs.lattice.utils import TB_from_wannier90, k_space_path
from triqs_dft_tools.sumk_dft import SumkDFT
def lambda_matrix_w90_t2g(add_lambda):
lambda_x, lambda_y, lambda_z = add_lambda
lambda_matrix = np.zeros((6, 6), dtype=complex)
lambda_matrix[0, 1] = +1j*lambda_z/2.0
lambda_matrix[0, 5] = -1j*lambda_x/2.0
lambda_matrix[1, 5] = -lambda_y/2.0
lambda_matrix[2, 3] = +1j*lambda_x/2.0
lambda_matrix[2, 4] = +lambda_y/2.0
lambda_matrix[3, 4] = -1j*lambda_z/2.0
lambda_matrix += np.transpose(np.conjugate(lambda_matrix))
return lambda_matrix
def change_basis(n_orb, orbital_order_to, orbital_order_from):
change_of_basis = np.eye(n_orb)
for ct, orb in enumerate(orbital_order_to):
orb_idx = orbital_order_from.index(orb)
change_of_basis[orb_idx, :] = np.roll(np.eye(n_orb, 1), ct)[:, 0]
return change_of_basis
def print_matrix(matrix, n_orb, text):
print('{}:'.format(text))
if np.any(matrix.imag > 1e-4):
fmt = '{:16.4f}' * n_orb
else:
fmt = '{:8.4f}' * n_orb
matrix = matrix.real
for row in matrix:
print((' '*4 + fmt).format(*row))
def _sigma_from_dmft(n_orb, orbital_order, with_sigma, spin, orbital_order_dmft=None, **specs):
if orbital_order_dmft is None:
orbital_order_dmft = orbital_order
if with_sigma == 'calc':
print('Setting Sigma from {}'.format(specs['dmft_path']))
sigma_imp_list = []
dc_imp_list = []
with HDFArchive(specs['dmft_path'], 'r') as ar:
for icrsh in range(ar['dft_input']['n_inequiv_shells']):
try:
sigma = ar['DMFT_results'][specs['it']][f'Sigma_freq_{icrsh}']
assert isinstance(sigma.mesh, MeshReFreq), 'Imported Greens function must be real frequency'
except(KeyError, AssertionError):
try:
sigma = ar['DMFT_results'][specs['it']][f'Sigma_maxent_{icrsh}']
except KeyError:
try:
sigma = ar['DMFT_results'][specs['it']][f'Sigma_Refreq_{icrsh}']
except KeyError:
raise KeyError('Provide either "Sigma_freq_0" in real frequency, "Sigma_Refreq_0" or "Sigma_maxent_0".')
sigma_imp_list.append(sigma)
for ish in range(ar['dft_input']['n_corr_shells']):
dc_imp_list.append(ar['DMFT_results'][specs['it']]['DC_pot'][ish])
mu_dmft = ar['DMFT_results'][specs['it']]['chemical_potential_post']
sum_k = SumkDFT(specs['dmft_path'], mesh=sigma.mesh)
sum_k.block_structure = ar['DMFT_input/block_structure']
sum_k.deg_shells = ar['DMFT_input/deg_shells']
sum_k.set_mu(mu_dmft)
# set Sigma and DC into sum_k
sum_k.dc_imp = dc_imp_list
sum_k.set_Sigma(sigma_imp_list)
# use add_dc function to rotate to sumk block structure and subtract the DC
sigma_sumk = sum_k.add_dc()
assert np.allclose(sum_k.proj_mat[0], sum_k.proj_mat[-1]), 'upfolding works only when proj_mat is the same for all kpoints (wannier mode)'
# now upfold with proj_mat to band basis, this only works for the
# case where proj_mat is equal for all k points (wannier mode)
sigma = Gf(mesh=sigma.mesh, target_shape=[n_orb, n_orb])
for ish in range(ar['dft_input']['n_corr_shells']):
sigma += sum_k.upfold(ik=0, ish=ish,
bname=spin, gf_to_upfold=sigma_sumk[ish][spin],
gf_inp=sigma)
# already subtracted
dc = 0.0
else:
print('Setting Sigma from memory')
sigma = with_sigma[spin]
dc = specs['dc'][0][spin][0, 0]
mu_dmft = specs['mu_dmft']
SOC = (spin == 'ud')
w_mesh_dmft = np.linspace(sigma.mesh.w_min, sigma.mesh.w_max, len(sigma.mesh))
assert sigma.target_shape[0] == n_orb, f'Number of Wannier orbitals: {n_orb} and self-energy target_shape {sigma.target_shape} does not match'
sigma_mat = sigma.data.real - np.eye(n_orb) * dc + 1j * sigma.data.imag
# rotate sigma from orbital_order_dmft to orbital_order
change_of_basis = change_basis(n_orb, orbital_order, orbital_order_dmft)
sigma_mat = np.einsum('ij, kjl -> kil', np.linalg.inv(change_of_basis), np.einsum('ijk, kl -> ijl', sigma_mat, change_of_basis))
# set up mesh
if 'w_mesh' in specs:
freq_dict = specs['w_mesh']
w_mesh = np.linspace(*freq_dict['window'], freq_dict['n_w'])
freq_dict.update({'w_mesh': w_mesh})
else:
w_mesh = w_mesh_dmft
freq_dict = {'w_mesh': w_mesh_dmft, 'n_w': len(sigma.mesh), 'window': [sigma.mesh.w_min, sigma.mesh.w_max]}
sigma_interpolated = np.zeros((n_orb, n_orb, freq_dict['n_w']), dtype=complex)
# interpolate sigma
def interpolate_sigma(w_mesh, w_mesh_dmft, orb1, orb2): return np.interp(w_mesh, w_mesh_dmft, sigma_mat[:, orb1, orb2])
for ct1, ct2 in itertools.product(range(n_orb), range(n_orb)):
sigma_interpolated[ct1, ct2] = interpolate_sigma(w_mesh, w_mesh_dmft, ct1, ct2)
return sigma_interpolated, mu_dmft, freq_dict
def sigma_FL(n_orb, orbital_order, Sigma_0, Sigma_Z, freq_dict, eta=0.0, mu_dmft=None):
print('Setting Re[Sigma] with Fermi liquid approximation')
if np.any(Sigma_0) and mu_dmft == None:
raise ValueError('Sigma_0 does not preserve electron count. Please provide "mu_dmft".')
elif not np.any(Sigma_0) and mu_dmft == None:
mu_dmft = 0.
eta = eta * 1j
# set up mesh
w_mesh = np.linspace(*freq_dict['window'], freq_dict['n_w'])
freq_dict.update({'w_mesh': w_mesh})
# setting up sigma
sigma_array = np.zeros((n_orb, n_orb, freq_dict['n_w']), dtype=complex)
def approximate_sigma(orb): return (1-1/Sigma_Z[orb]) * freq_dict['w_mesh'] + Sigma_0[orb] - mu_dmft
for ct, orb in enumerate(orbital_order):
sigma_array[ct, ct] = approximate_sigma(ct) + 1j * eta
return sigma_array, freq_dict
def _calc_alatt(n_orb, mu, eta, e_mat, sigma, qp_bands=False, e_vecs=None,
proj_nuk=None, trace=True, **freq_dict):
'''
calculate slice of lattice spectral function for given TB dispersion / e_mat and self-energy
Parameters
----------
n_orb : int
number of Wannier orbitals
proj_nuk : optinal, 2D numpy array (n_orb, n_k)
projections to be applied on A(k,w) in band basis. Only works when band_basis=True
Returns
-------
alatt_k_w : numpy array, either (n_k, n_w) or if trace=False (n_k, n_w, n_orb)
Lattice Green's function on specified k-path / mesh
'''
# adjust to system size
def upscale(quantity, n_orb): return quantity * np.identity(n_orb)
mu = upscale(mu, n_orb)
eta = upscale(eta, n_orb)
if isinstance(e_vecs, np.ndarray):
sigma_rot = np.zeros(sigma.shape, dtype=complex)
w_vec = np.array([upscale(freq_dict['w_mesh'][w], n_orb) for w in range(freq_dict['n_w'])])
n_k = e_mat.shape[2]
if not qp_bands:
if trace:
alatt_k_w = np.zeros((n_k, freq_dict['n_w']))
else:
alatt_k_w = np.zeros((n_k, freq_dict['n_w'], n_orb))
def invert_and_trace(w, eta, mu, e_mat, sigma, trace, proj=None):
# inversion is automatically vectorized over first axis of 3D array (omega first index now)
Glatt = np.linalg.inv(w + eta[None, ...] + mu[None, ...] - e_mat[None, ...] - sigma.transpose(2, 0, 1))
A_w_nu = -1.0/(2.0 * np.pi)* np.diagonal(Glatt - Glatt.transpose(0,2,1).conj(), axis1=1, axis2=2).imag
if isinstance(proj, np.ndarray):
A_w_nu = A_w_nu * proj[None, :]
if trace:
return np.sum(A_w_nu, axis=1)
else:
return A_w_nu
for ik in range(n_k):
# if evecs are given transform sigma into band basis
if isinstance(e_vecs, np.ndarray):
sigma_rot = np.einsum('ij,jkw->ikw', e_vecs[:, :, ik].conjugate().transpose(), np.einsum('ijw,jk->ikw', sigma, e_vecs[:, :, ik]))
if isinstance(proj_nuk, np.ndarray):
alatt_k_w[ik, :] = invert_and_trace(w_vec, eta, mu, e_mat[:, :, ik], sigma_rot, trace, proj_nuk[:, ik])
else:
alatt_k_w[ik, :] = invert_and_trace(w_vec, eta, mu, e_mat[:, :, ik], sigma_rot, trace)
else:
alatt_k_w[ik, :] = invert_and_trace(w_vec, eta, mu, e_mat[:, :, ik], sigma, trace)
else:
alatt_k_w = np.zeros((n_k, n_orb))
kslice = np.zeros((freq_dict['n_w'], n_orb))
def kslice_interp(orb): return interp1d(freq_dict['w_mesh'], kslice[:, orb])
for ik in range(n_k):
for iw, w in enumerate(freq_dict['w_mesh']):
np.fill_diagonal(sigma[:, :, iw], np.diag(sigma[:, :, iw]).real)
#sigma[:,:,iw] = sigma[:,:,iw].real
kslice[iw], _ = np.linalg.eigh(upscale(w, n_orb) + eta + mu - e_mat[:, :, ik] - sigma[:, :, iw])
for orb in range(n_orb):
w_min, w_max = freq_dict['window']
try:
x0 = brentq(kslice_interp(orb), w_min, w_max)
w_bin = int((x0 - w_min) / ((w_max - w_min) / freq_dict['n_w']))
alatt_k_w[ik, orb] = freq_dict['w_mesh'][w_bin]
except ValueError:
pass
return alatt_k_w
def _calc_kslice(n_orb, mu, eta, e_mat, sigma, qp_bands, e_vecs=None, proj_nuk=None, **freq_dict):
'''
calculate lattice spectral function for given TB dispersion / e_mat and self-energy
Parameters
----------
n_orb : int
number of Wannier orbitals
proj_nuk : optinal, 2D numpy array (n_orb, n_k)
projections to be applied on A(k,w) in band basis. Only works when band_basis=True
Returns
-------
alatt_k_w : numpy array, either (n_k, n_w) or if trace=False (n_k, n_w, n_orb)
Lattice Green's function on specified k-path / mesh
'''
# adjust to system size
def upscale(quantity, n_orb): return quantity * np.identity(n_orb)
mu = upscale(mu, n_orb)
eta = upscale(eta, n_orb)
iw0 = np.where(np.sign(freq_dict['w_mesh']) == True)[0][0]-1
print_matrix(sigma[:, :, iw0], n_orb, 'Zero-frequency Sigma')
if isinstance(e_vecs, np.ndarray):
sigma_rot = np.zeros(sigma.shape, dtype=complex)
n_kx, n_ky = e_mat.shape[2:4]
if not qp_bands:
alatt_k_w = np.zeros((n_kx, n_ky))
def invert_and_trace(w, eta, mu, e_mat, sigma, proj=None):
# inversion is automatically vectorized over first axis of 3D array (omega first index now)
Glatt = np.linalg.inv(w + eta + mu - e_mat - sigma)
A_nu = -1.0/(2.0 * np.pi)* np.diagonal(Glatt - Glatt.transpose().conj()).imag
if isinstance(proj, np.ndarray):
A_nu = A_nu * proj
return np.sum(A_nu)
for ikx, iky in itertools.product(range(n_kx), range(n_ky)):
if isinstance(e_vecs, np.ndarray):
sigma_rot = np.einsum('ij,jk->ik',
e_vecs[:, :, ikx, iky].conjugate().transpose(),
np.einsum('ij,jk->ik', sigma[:, :, iw0], e_vecs[:, :, ikx, iky]))
else:
sigma_rot = sigma[:, :, iw0]
if isinstance(proj_nuk, np.ndarray):
alatt_k_w[ikx, iky] = invert_and_trace(upscale(freq_dict['w_mesh'][iw0], n_orb), eta, mu,
e_mat[:, :, ikx, iky], sigma_rot, proj_nuk[:, ikx, iky])
else:
alatt_k_w[ikx, iky] = invert_and_trace(upscale(freq_dict['w_mesh'][iw0], n_orb), eta, mu, e_mat[:, :, ikx, iky], sigma_rot)
else:
assert n_kx == n_ky, 'Not implemented for N_kx != N_ky'
def search_for_extrema(data):
# return None for no extrema, [] if ends of interval are the only extrema,
# list of indices if local extrema are present
answer = np.all(data > 0) or np.all(data < 0)
if answer:
return
else:
roots = []
roots.append(list(argrelextrema(data, np.greater)[0]))
roots.append(list(argrelextrema(data, np.less)[0]))
roots = sorted([item for sublist in roots for item in sublist])
return roots
alatt_k_w = np.zeros((n_kx, n_ky, n_orb))
# go through grid horizontally, then vertically
for it in range(2):
kslice = np.zeros((n_kx, n_ky, n_orb))
for ik1 in range(n_kx):
e_temp = e_mat[:, :, :, ik1] if it == 0 else e_mat[:, :, ik1, :]
for ik2 in range(n_kx):
e_val, _ = np.linalg.eigh(eta + mu - e_temp[:, :, ik2] - sigma[:, :, iw0])
k1, k2 = [ik2, ik1] if it == 0 else [ik1, ik2]
kslice[k1, k2] = e_val
for orb in range(n_orb):
temp_kslice = kslice[:,ik1,orb] if it == 0 else kslice[ik1,:,orb]
roots = search_for_extrema(temp_kslice)
# iterate through sections between extrema
if roots is not None:
idx_1 = 0
for root_ct in range(len(roots) + 1):
idx_2 = roots[root_ct] if root_ct < len(roots) else n_kx
root_section = temp_kslice[idx_1:idx_2+1]
try:
x0 = brentq(interp1d(np.linspace(idx_1, idx_2, len(root_section)), root_section), idx_1, idx_2)
k1, k2 = [int(np.floor(x0)), ik1] if it == 0 else [ik1, int(np.floor(x0))]
alatt_k_w[k1, k2, orb] += 1
except(ValueError):
pass
idx_1 = idx_2
alatt_k_w[np.where(alatt_k_w > 1)] = 1
return alatt_k_w
[docs]
def get_tb_bands(e_mat, proj_on_orb=[None], **specs):
'''
calculate eigenvalues and eigenvectors for given list of e_mat on kmesh
Parameters
----------
e_mat : numpy array of shape (n_orb, n_orb, nk) or (n_orb, n_orb, nk, nk)
Returns
-------
e_val : numpy array of shape (n_orb, n_orb, nk) or (n_orb, n_orb, nk, nk)
eigenvalues as matrix
e_vec : numpy array of shape (n_orb, n_orb, nk) or (n_orb, n_orb, nk, nk)
eigenvectors as matrix
'''
e_val = np.zeros((e_mat.shape), dtype=complex)
e_vec = np.zeros((e_mat.shape), dtype=complex)
n_orb = e_mat.shape[0]
for ikx in range(e_mat.shape[2]):
# if we have a 2d kmesh e_mat is dim=4
if len(e_mat.shape) == 4:
for iky in range(e_mat.shape[3]):
e_val[range(n_orb), range(n_orb), ikx, iky], e_vec[:, :, ikx, iky] = np.linalg.eigh(e_mat[:, :, ikx, iky])
else:
e_val[range(n_orb), range(n_orb), ikx], e_vec[:, :, ikx] = np.linalg.eigh(e_mat[:, :, ikx])
if proj_on_orb[0] is not None:
print(f'calculating projection on orbitals {proj_on_orb}')
total_proj = np.zeros(np.shape(e_vec[0]))
for band in range(n_orb):
for orb in proj_on_orb:
total_proj[band] += np.real(e_vec[orb, band] * e_vec[orb, band].conjugate())
else:
total_proj = None
return e_val, e_vec, total_proj
def get_tb_kslice(tb, mu_tb, **specs):
w90_paths = list(map(lambda section: (np.array(specs[section[0]]), np.array(specs[section[1]])), specs['bands_path']))
upper_left = w90_paths[0][0]
lower_right = w90_paths[1][-1]
origin = w90_paths[0][1]
assert np.allclose(origin, w90_paths[1][0]), '"bands_path" coordinates for origin of Fermi surface needs to be consistent'
if 'kz' in specs and specs['kz'] != 0.:
assert 'Z' in specs, 'Please provide Z point coordinate in tb_data_dict as input coordinate'
Z = np.array(specs['Z'])
kz = specs['kz']
else:
kz = 0.
Z = np.zeros((3))
# calculate FS at the mu_tb value
FS_kx_ky, band_char = get_kx_ky_FS(lower_right, upper_left, origin, Z, tb, N_kxy=specs['n_k'], kz=kz, fermi=mu_tb)
return FS_kx_ky, band_char
def _fract_ind_to_val(x, ind):
ind[ind == len(x)-1] = len(x)-1-1e-6
int_ind = [int(indi) for indi in ind]
int_ind_p1 = [int(indi)+1 for indi in ind]
return x[int_ind] + (x[int_ind_p1] - x[int_ind])*(np.array(ind)-np.array(int_ind))
def get_kx_ky_FS(lower_right, upper_left, origin, Z, tb, select=None, N_kxy=10, kz=0.0, fermi=0.0):
# create mesh
kx = np.linspace(0, 0.5, N_kxy)
ky = np.linspace(0, 0.5, N_kxy)
if select is None:
select = np.array(range(tb.n_orbitals))
# go in horizontal arrays from bottom to top
E_FS = np.zeros((tb.n_orbitals, N_kxy, N_kxy))
for kyi in range(N_kxy):
path_FS = [((upper_left - origin)/(N_kxy-1)*kyi+kz*Z+origin, origin+(lower_right-origin)+(upper_left-origin)/(N_kxy-1)*kyi+kz*Z)]
k_vec, dst, tks = k_space_path(path_FS, num=N_kxy)
E_FS[:, :, kyi] = tb.dispersion(k_vec).transpose() - fermi
contours = {}
FS_kx_ky = {}
FS_kx_ky_prim = {}
band_char = {}
# contour for each sheet
for sheet in range(tb.n_orbitals):
contours[sheet] = skimage.measure.find_contours(E_FS[sheet, :, :], 0.0)
sheet_ct = 0
for sheet in contours.keys():
for sec_per_sheet in range(len(contours[sheet])):
# once on 2D cubic mesh
FS_kx_ky[sheet_ct] = np.vstack([_fract_ind_to_val(kx, contours[sheet][sec_per_sheet][:, 0]),
_fract_ind_to_val(ky, contours[sheet][sec_per_sheet][:, 1]),
kz*np.ones(len(contours[sheet][sec_per_sheet][:, 0]))]).T.reshape(-1, 3)
# repeat on actual mesh for computing the weights
ks_skimage = contours[sheet][sec_per_sheet]/(N_kxy-1)
FS_kx_ky_prim[sheet_ct] = (+ np.einsum('i,j->ij', ks_skimage[:, 0], lower_right)
+ np.einsum('i,j->ij', ks_skimage[:, 1], upper_left)
+ np.einsum('i,j->ij', kz * np.ones(ks_skimage.shape[0]), Z))
band_char[sheet_ct] = {}
# compute the weight aka band character
for ct_k, k_on_sheet in enumerate(FS_kx_ky_prim[sheet_ct]):
E_mat = tb.fourier(k_on_sheet)
e_val, e_vec = np.linalg.eigh(E_mat[select[:, np.newaxis], select])
orb_on_FS = np.argmin(np.abs(e_val))
band_char[sheet_ct][ct_k] = [np.round(np.real(e_vec[orb, orb_on_FS]*np.conjugate(e_vec[orb, orb_on_FS])), 4) for orb in range(len(select))]
sheet_ct += 1
return FS_kx_ky, band_char
def _setup_plot_bands(ax, special_k, k_points_labels, freq_dict):
ax.axhline(y=0, c='gray', ls='--', lw=0.8, zorder=0)
ax.set_ylabel(r'$\epsilon - \mu$ (eV)')
# ax.set_ylim(*freq_dict['window'])
for ik in special_k:
ax.axvline(x=ik, linewidth=0.7, color='k', zorder=0.5)
ax.set_xticks(special_k)
ax.set_xlim(special_k[0], special_k[-1])
k_points_labels = [r'$\Gamma$' if k == 'G' else k for k in k_points_labels]
ax.set_xticklabels(k_points_labels)
def setup_plot_kslice(ax):
ax.set_aspect(1)
# ax.set_xlim(0,1)
# ax.set_ylim(0,1)
ax.xaxis.set_major_locator(MaxNLocator(integer=True))
ax.yaxis.set_major_locator(MaxNLocator(integer=True))
ax.set_xlabel(r'$k_x\pi/a$')
ax.set_ylabel(r'$k_y\pi/b$')
def plot_bands(fig, ax, alatt_k_w, tb_data, freq_dict, n_orb, tb=True, alatt=False, qp_bands=False, **plot_dict):
assert tb_data['special_k'] is not None, 'a regular k point mesh has been used, please call plot_dos'
lw = plot_dict.get('lw', 1)
tb_label = plot_dict.get('tb_label', r'tight-binding')
proj_on_orb = tb_data['proj_on_orb']
total_proj = tb_data['proj_nuk']
if alatt:
if alatt_k_w is None:
raise ValueError('A(k,w) unknown. Specify "with_sigma = True"')
if qp_bands:
for orb in range(n_orb):
ax.scatter(tb_data['k_mesh'], alatt_k_w[:, orb].T, c=np.array([eval('cm.'+plot_dict['colorscheme_qpbands'])(1.0)]), zorder=2., s=1.)
else:
kw_x, kw_y = np.meshgrid(tb_data['k_mesh'], freq_dict['w_mesh'])
vmax = plot_dict['vmax'] if 'vmax' in plot_dict else np.max(alatt_k_w)
vmin = plot_dict['vmin'] if 'vmin' in plot_dict else 0.0
graph = ax.pcolormesh(kw_x, kw_y, alatt_k_w.T, cmap=plot_dict['colorscheme_alatt'],
norm=Normalize(vmin=vmin, vmax=vmax), shading='gouraud')
if 'colorbar' not in plot_dict or plot_dict['colorbar']:
colorbar = plt.colorbar(graph)
colorbar.set_label(r'$A(k, \omega)$')
if tb:
# if projection is requested, _get_tb_bands() ran already
if proj_on_orb[0] is not None:
eps_nuk = tb_data['e_mat']
evec_nuk = tb_data['e_vecs']
else:
eps_nuk, evec_nuk, _ = get_tb_bands(**tb_data)
for band in range(n_orb):
if not proj_on_orb[0] is not None:
if isinstance(plot_dict['colorscheme_bands'], str):
color = eval('cm.'+plot_dict['colorscheme_bands'])(1.0)
else:
color = plot_dict['colorscheme_bands']
if band == 0:
ax.plot(tb_data['k_mesh'], eps_nuk[band, band].real - tb_data['mu_tb'], c=color, label=tb_label, zorder=1., lw=lw)
else:
ax.plot(tb_data['k_mesh'], eps_nuk[band, band].real - tb_data['mu_tb'], c=color, zorder=1., lw=lw)
else:
color = eval('cm.'+plot_dict['colorscheme_bands'])(total_proj[band])
ax.scatter(tb_data['k_mesh'], eps_nuk[band, band].real - tb_data['mu_tb'], c=color, s=1, label=r'tight-binding', zorder=1.)
_setup_plot_bands(ax, tb_data['special_k'], tb_data['k_points_labels'], freq_dict)
def plot_dos(fig, ax, alatt_k_w, tb_data, freq_dict, tb=False, alatt=True, label=None, color=None):
assert tb == False, 'plotting TB DOS is not supported yet.'
assert len(alatt_k_w.shape) == 2, 'input Akw should only have a k and omega index'
if not label:
label = ''
if not color:
ax.plot(freq_dict['w_mesh'], np.sum(alatt_k_w, axis=0)/alatt_k_w.shape[0], label=label)
else:
ax.plot(freq_dict['w_mesh'], np.sum(alatt_k_w, axis=0) /
alatt_k_w.shape[0], label=label, color=color)
ax.axvline(x=0, c='gray', ls='--', zorder=0)
ax.set_xlabel(r'$\epsilon - \mu$ (eV)')
ax.set_ylabel(r'A($\omega$)')
ax.set_xlim(*freq_dict['window'])
return
def plot_kslice(fig, ax, alatt_k_w, tb_data, freq_dict, n_orb, tb_dict, tb=True, alatt=False, quarter=0, **plot_dict):
proj_on_orb = tb_data['proj_on_orb']
if quarter:
assert isinstance(quarter, int) or all(isinstance(x, int) for x in quarter), 'quarter should be'\
f'an integer or list of integers, but is {type(quarter)}.'
if isinstance(quarter, int):
quarter = [quarter]
sign = [1, -1]
quarters = np.array([sign, sign])
four_quarters = list(itertools.product(*quarters))
used_quarters = [four_quarters[x] for x in quarter]
vmax = plot_dict['vmax'] if 'vmax' in plot_dict else np.max(alatt_k_w)
vmin = plot_dict['vmin'] if 'vmin' in plot_dict else 0.0
assert vmax > vmin, 'vmax needs to be larger than vmin'
if alatt:
if alatt_k_w is None:
raise ValueError('A(k,w) unknown. Specify "with_sigma = True"')
n_kx, n_ky = tb_data['e_mat'].shape[2:4]
kx, ky = np.meshgrid(range(n_kx), range(n_ky))
draw_colorbar = True
for (qx, qy) in used_quarters:
if len(alatt_k_w.shape) > 2:
for orb in range(n_orb):
ax.contour(qx * kx/(n_kx-1), qy * ky/(n_ky-1), alatt_k_w[:, :, orb].T,
colors=np.array([eval('cm.'+plot_dict['colorscheme_qpbands'])(0.7)]), levels=1, zorder=2)
else:
graph = ax.pcolormesh(qx * kx/(n_kx-1), qy * ky/(n_ky-1), alatt_k_w.T,
cmap=plot_dict['colorscheme_kslice'],
norm=Normalize(vmin=vmin, vmax=vmax),
shading='gouraud')
if draw_colorbar and ('colorbar' not in plot_dict or plot_dict['colorbar']):
colorbar = plt.colorbar(graph)
colorbar.set_label(r'$A(k, 0$)')
draw_colorbar = False
if tb:
FS_kx_ky, band_char = get_tb_kslice(tb_data['tb'], tb_data['mu_tb'], **tb_dict)
for sheet in FS_kx_ky.keys():
for k_on_sheet in range(FS_kx_ky[sheet].shape[0]):
if not proj_on_orb[0] is not None:
if isinstance(plot_dict['colorscheme_bands'], str):
color = eval('cm.'+plot_dict['colorscheme_bands'])(1.0)
else:
color = plot_dict['colorscheme_bands']
else:
total_proj = 0
for orb in proj_on_orb:
total_proj += band_char[sheet][k_on_sheet][orb]
color = eval('cm.'+plot_dict['colorscheme_bands'])(total_proj)
for (qx, qy) in used_quarters:
ax.plot(2*qx * FS_kx_ky[sheet][k_on_sheet:k_on_sheet+2, 0], 2*qy * FS_kx_ky[sheet][k_on_sheet:k_on_sheet+2, 1], '-',
solid_capstyle='round', c=color, zorder=1., label=plot_dict['label'] if 'label' in plot_dict else '')
setup_plot_kslice(ax)
return ax
[docs]
def get_dmft_bands(n_orb, mu_tb, w90_path=None, w90_seed=None, TB_obj=None, add_spin=False, add_lambda=None, add_local=None,
with_sigma=None, fermi_slice=False, qp_bands=False, orbital_order_to=None,
add_mu_tb=False, band_basis=False, proj_on_orb=None, trace=True, eta=0.0,
mu_shift=0.0, proj_nuk=None, **specs):
'''
Extract tight-binding from given w90 seed_hr.dat and seed.wout files or alternatively given TB_obj, and then extract from
given solid_dmft calculation the self-energy and construct the spectral function A(k,w) on
given k-path.
Parameters
----------
n_orb : int
Number of Wannier orbitals in seed_hr.dat
mu_tb : float
Chemical potential of tight-binding calculation
w90_path : string
Path to w90 files
w90_seed : string
Seed of wannier90 calculation, i.e. seed_hr.dat and seed.wout
TB_obj : TB object
Tight-binding object from TB_from_wannier90
add_spin : bool, default=False
Extend w90 Hamiltonian by spin indices
add_lambda : float, default=None
Add SOC term with strength add_lambda (works only for t2g shells)
add_local : numpy array, default=None
Add local term of dimension (n_orb x n_orb)
with_sigma : str, or BlockGf, default=None
Add self-energy to spectral function? Can be either directly take
a triqs BlockGf object or can be either 'calc' or 'model'
'calc' reads results from h5 archive (solid_dmft)
in case 'calc' or 'model' are specified a extra kwargs dict has
to be given sigma_dict containing information about the self-energy
add_mu_tb : bool, default=False
Add the TB specified chemical potential to the lattice Green function
set to True if DMFT calculation was performed with DFT fermi subtracted.
proj_on_orb : int or list of int, default=None
orbital projections to be made for the spectral function and TB bands
the integer refer to the orbitals read
trace : bool, default=True
Return trace over orbitals for spectral function. For special
post-processing purposes this can be set to False giving the returned
alatt_k_w an extra dimension n_orb
eta : float, default=0.0
Broadening of spectral function, finitie shift on imaginary axis
if with_sigma=None it has to be provided !=0.0
mu_shift : float, default=0.0
Manual extra shift when calculating the spectral function
proj_nuk : numpy array, default [None]
Extra projections to be applied to the final spectral function
per orbital and k-point. Has to match shape of final lattice Green
function. Will be applied together with proj_on_orb if specified.
Returns
-------
tb_data : dict
tight binding dict containing the kpoint mesh, dispersion / emat, and eigenvectors
alatt_k_w : numpy array (float) of dim n_k x n_w ( x n_orb if trace=False)
lattice spectral function data on the kpoint mesh defined in tb_data and frequency
mesh defined in freq_dict
freq_dict : dict
frequency mesh information on which alatt_k_w is evaluated
'''
# set default ordering
if 'orbital_order_w90' in specs:
orbital_order_w90 = specs['orbital_order_w90']
else:
orbital_order_w90 = list(range(n_orb))
if orbital_order_to is None:
orbital_order_to = orbital_order_w90
# checks
assert len(set(orbital_order_to)) == len(orbital_order_to), 'Please provide a unique identifier for each orbital.'
assert set(orbital_order_w90) == set(orbital_order_to), f'Identifiers of orbital_order_to and orbital_order_w90'\
f'do not match! orbital_order_to is {orbital_order_to}, but orbital_order_w90 is {orbital_order_w90}.'
assert with_sigma or eta != 0.0, 'if no Sigma is provided eta has to be different from 0.0'
# proj_on_orb
assert isinstance(proj_on_orb, (int, type(None))) or all(isinstance(x, (int, type(None))) for x in proj_on_orb), 'proj_on_orb should be '\
f'an integer or list of integers, but is {type(specs["proj_on_orb"])}.'
if isinstance(proj_on_orb, (int, type(None))):
proj_on_orb = [proj_on_orb]
else:
proj_on_orb = proj_on_orb
# if projection is requested we have to use band_basis
if proj_on_orb[0] is not None:
band_basis = True
# if proj_nuk is given we need to use the band_basis
if isinstance(proj_nuk, np.ndarray) and not band_basis:
band_basis = True
if TB_obj is None:
assert w90_path is not None and w90_seed is not None, 'Please provide either a TB object or a path to the wannier90 files'
# set up Wannier Hamiltonian
n_orb = 2 * n_orb if add_spin else n_orb
change_of_basis = change_basis(n_orb, orbital_order_to, orbital_order_w90)
H_add_loc = np.zeros((n_orb, n_orb), dtype=complex)
if not isinstance(add_local, type(None)):
assert np.shape(add_local) == (n_orb, n_orb), 'add_local must have dimension (n_orb, n_orb), but has '\
f'dimension {np.shape(add_local)}'
H_add_loc += add_local
if add_spin and add_lambda:
H_add_loc += lambda_matrix_w90_t2g(add_lambda)
tb = TB_from_wannier90(path=w90_path, seed=w90_seed, extend_to_spin=add_spin, add_local=H_add_loc)
else:
assert not add_spin, 'add_spin is only valid when reading from wannier90 files'
change_of_basis = change_basis(n_orb, orbital_order_to, orbital_order_w90)
tb = TB_obj
eta = eta * 1j
# print local H(R)
h_of_r = np.einsum('ij, jk -> ik', np.linalg.inv(change_of_basis), np.einsum('ij, jk -> ik', tb.hoppings[(0, 0, 0)], change_of_basis))
if n_orb <= 12:
print_matrix(h_of_r, n_orb, 'H(R=0)')
# kmesh prep
if ('bands_path' in specs and 'kmesh' in specs) or ('bands_path' not in specs and 'kmesh' not in specs):
raise ValueError('choose either a bands_path or kmesh!')
elif 'bands_path' in specs:
w90_paths = list(map(lambda section: (
np.array(specs[section[0]]), np.array(specs[section[1]])), specs['bands_path']))
k_points_labels = [k[0] for k in specs['bands_path']] + [specs['bands_path'][-1][1]]
n_k = specs['n_k']
k_vec, k_1d, special_k = k_space_path(w90_paths, bz=tb.bz, num=n_k)
elif 'kmesh' in specs:
assert 'reg' in specs['kmesh'], 'only regular kmesh is implemented'
special_k = k_points_labels = None
# read kmesh size
if 'n_k' in specs:
k_dim = specs['n_k']
elif 'k_dim' in specs:
k_dim = specs['k_dim']
else:
raise ValueError('please specify either n_k or k_dim')
# create regular kmesh
if isinstance(k_dim, int):
k_spacing = np.linspace(0, 1, k_dim, endpoint=False)
k_vec = np.array(np.meshgrid(k_spacing, k_spacing, k_spacing)).T.reshape(-1, 3)
n_k = k_dim**3
k_1d = (k_dim, k_dim, k_dim)
elif all(isinstance(x, int) for x in k_dim) and len(k_dim) == 3:
k_x = np.linspace(0, 1, k_dim[0], endpoint=False)
k_y = np.linspace(0, 1, k_dim[1], endpoint=False)
k_z = np.linspace(0, 1, k_dim[2], endpoint=False)
k_vec = np.array(np.meshgrid(k_x, k_y, k_z)).T.reshape(-1, 3)
n_k = k_dim[0]*k_dim[1]*k_dim[2]
k_1d = k_dim
else:
raise ValueError(
'k_dim / n_k needs to be either an int or a list / tuple of int length 3')
# calculate tight-binding eigenvalues for non slices
if not fermi_slice:
# Fourier trafo on input grid / path
e_mat = tb.fourier(k_vec).transpose(1, 2, 0)
e_mat = np.einsum('ij, jkl -> ikl', np.linalg.inv(change_of_basis),
np.einsum('ijk, jm -> imk', e_mat, change_of_basis))
else:
if 'kz' in specs and specs['kz'] != 0.:
assert 'Z' in specs, 'Please provide Z point coordinate in tb_data_dict as input coordinate'
Z = np.array(specs['Z'])
kz = specs['kz']
else:
kz = 0.
Z = np.zeros((3))
k_vec = np.zeros((n_k*n_k, 3))
e_mat = np.zeros((n_orb, n_orb, n_k, n_k), dtype=complex)
upper_left = w90_paths[0][0]
lower_right = w90_paths[1][-1]
origin = w90_paths[0][1]
for ik_y in range(n_k):
path_along_x = [((upper_left - origin)/(n_k-1)*ik_y+kz*Z+origin, origin+(lower_right-origin)+(upper_left-origin)/(n_k-1)*ik_y+kz*Z)]
k_vec[ik_y*n_k:ik_y*n_k+n_k, :], k_1d, special_k = k_space_path(path_along_x, bz=tb.bz, num=n_k)
e_mat[:, :, :, ik_y] = tb.fourier(k_vec[ik_y*n_k:ik_y*n_k+n_k, :]).transpose(1, 2, 0)
#if add_spin:
# e_mat = e_mat[2:5, 2:5]
e_mat = np.einsum('ij, jklm -> iklm', np.linalg.inv(change_of_basis), np.einsum('ijkl, jm -> imkl', e_mat, change_of_basis))
if band_basis:
e_mat, e_vecs, orb_proj = get_tb_bands(e_mat, proj_on_orb)
else:
e_vecs = total_proj = orb_proj = None
# now we merge proj_nuk and orb_proj (has reverse shape)
if isinstance(proj_nuk, np.ndarray) and isinstance(orb_proj, np.ndarray):
proj_nuk = proj_nuk * orb_proj
elif not isinstance(proj_nuk, np.ndarray) and isinstance(orb_proj, np.ndarray):
proj_nuk = orb_proj
# dmft output
if with_sigma:
sigma_types = ['calc', 'model']
if isinstance(with_sigma, str):
if with_sigma not in sigma_types:
raise ValueError('Invalid sigma type. Expected one of: {}'.format(sigma_types))
elif not isinstance(with_sigma, BlockGf):
raise ValueError('Invalid sigma type. Expected BlockGf.')
# get sigma
if with_sigma == 'model':
mu_dmft = None if 'mu_dmft' not in specs else specs['mu_dmft']
delta_sigma, freq_dict = sigma_FL(n_orb, orbital_order_to, specs['Sigma_0'], specs['Sigma_Z'], specs['w_mesh'], eta=eta, mu_dmft=mu_dmft)
mu = mu_tb + mu_shift
# else is from dmft or memory:
else:
delta_sigma, mu_dmft, freq_dict = _sigma_from_dmft(n_orb, orbital_order_to, with_sigma, **specs)
mu = mu_dmft + mu_shift
freq_dict['sigma_upfolded'] = delta_sigma
if add_mu_tb:
print('Adding mu_tb to DMFT μ; assuming DMFT was run with subtracted dft μ.')
mu += mu_tb
print('μ={:2.4f} eV set for calculating A(k,ω)'.format(mu))
assert n_orb == delta_sigma.shape[0] and n_orb == delta_sigma.shape[
1], f'Number of orbitals n_orb={n_orb} and shape of sigma: {delta_sigma.shape} does not match'
if isinstance(proj_nuk, np.ndarray):
assert n_orb == proj_nuk.shape[0], f'Number of orbitals n_orb={n_orb} does not match shape of proj_nuk: {proj_nuk.shape[0]}'
if not fermi_slice:
assert proj_nuk.shape[-1] == e_vecs.shape[
2], f'Number of kpoints in proj_nuk : {proj_nuk.shape[-1]} does not match number of kpoints in e_vecs: {e_vecs.shape[2]}'
else:
assert proj_nuk.shape == tuple([n_orb, e_vecs.shape[2], e_vecs.shape[3]]
), f'shape of projectors {proj_nuk.shape} does not match expected shape of [{n_orb},{e_vecs.shape[2]},{e_vecs.shape[3]}]'
# calculate alatt
if not fermi_slice:
alatt_k_w = _calc_alatt(n_orb, mu, eta, e_mat, delta_sigma, qp_bands, e_vecs=e_vecs,
trace=trace, proj_nuk=proj_nuk, **freq_dict)
else:
alatt_k_w = _calc_kslice(n_orb, mu, eta, e_mat, delta_sigma, qp_bands, e_vecs=e_vecs,
proj_nuk=proj_nuk, **freq_dict)
else:
freq_dict = {}
freq_dict['w_mesh'] = None
freq_dict['window'] = None
alatt_k_w = None
tb_data = {'k_mesh': k_1d, 'special_k': special_k, 'k_points': k_vec,
'k_points_labels': k_points_labels, 'e_mat': e_mat,
'e_vecs': e_vecs, 'tb': tb, 'mu_tb': mu_tb,
'proj_on_orb': proj_on_orb, 'proj_nuk': proj_nuk}
return tb_data, alatt_k_w, freq_dict