triqs::atom_diag::atomic_g_w

#include <triqs/atom_diag/gf.hpp>

Synopsis

  1. template<bool Complex>
    block_gf<triqs::mesh::refreq> atomic_g_w (gf_lehmann_t<Complex> const & lehmann,
    gf_struct_t const & gf_struct,
    mesh::refreq const & mesh,
    double broadening = 0)
  2. template<bool Complex>
    block_gf<triqs::mesh::refreq> atomic_g_w (atom_diag<Complex> const & atom,
    double beta,
    gf_struct_t const & gf_struct,
    std::pair<double, double> const & energy_window,
    int n_w,
    double broadening = 0,
    excluded_states_t const & excluded_states = {})

Documentation

1) The atomic retarded Green’s function, constructed from precomputed Lehmann representation

2) The atomic retarded Green’s function, possibly with excluded states (none by default)

Template parameters

  • Complex Do we have a diagonalization problem with a complex-valued Hamiltonian?

Parameters

  • lehmann Lehmann representation.

  • gf_struct Block structure of the Green’s function, block name -> list of inner indices.

  • mesh Real frequency mesh used in construction.

  • broadening Lorentian broadening of the spectrum (imaginary frequency shift).

  • atom Solved diagonalization problem.

  • beta Inverse temperature.

  • energy_window Energy window \((\omega_{min}, \omega_{max})\).

  • n_w Number of frequency points.

  • excluded_states Excluded eigenstates as pairs (subspace index, inner index).

Returns

Atomic Green’s function \(G_{at}(\omega)\).